login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264918
Decimal expansion of constant z = Sum_{n>=1} {(3/2)^n} / 2^n, where {x} denotes the fractional part of x.
5
3, 9, 3, 1, 8, 8, 4, 7, 7, 0, 4, 9, 6, 4, 4, 3, 2, 4, 4, 9, 7, 2, 5, 8, 2, 1, 3, 1, 3, 8, 9, 0, 3, 8, 8, 5, 8, 5, 4, 8, 3, 9, 1, 4, 0, 7, 8, 8, 6, 6, 2, 8, 6, 9, 5, 3, 9, 2, 9, 3, 2, 4, 7, 5, 7, 5, 7, 8, 7, 7, 5, 8, 3, 3, 8, 9, 7, 4, 9, 8, 6, 6, 8, 1, 0, 9, 7, 6, 6, 6, 2, 0, 6, 1, 0, 1, 8, 5, 8, 8, 8, 0, 1, 3, 3, 3, 0, 0, 8, 0, 5, 9, 3, 2, 2, 6, 3, 1, 5, 3, 2, 6, 8, 0, 9, 0, 4, 7, 5, 0, 4, 9, 4, 2, 6, 6, 6, 1, 2, 1, 1, 4, 2, 4, 3, 3, 4, 9, 8, 4, 4, 3, 5, 8, 4, 7, 7, 5, 8, 5, 0, 6, 5, 5, 9, 3, 3, 7, 2, 5, 0, 9, 1, 4, 3, 2, 8, 8, 7, 7, 0, 5, 4, 3, 2, 2, 3, 1, 4, 0, 7, 7, 1, 7, 1, 7, 5, 9, 5, 3, 3, 3, 7, 7, 6
OFFSET
1,1
LINKS
FORMULA
z = Sum_{n>=1} (3^n mod 2^n) / 4^n = Sum_{n>=1} A002380(n) / 4^n.
3 - z = Sum_{n>=1} [(3/2)^n] / 2^n = Sum_{n>=1} A002379(n) / 2^n, where [x] denotes the integer floor function of x.
EXAMPLE
z = 0.39318847704964432449725821313890388585483914078866\
28695392932475757877583389749866810976662061018588\
80133300805932263153268090475049426661211424334984\
43584775850655933725091432887705432231407717175953\
33776901692614854937460993931094741172922114373160\
19617637538747813543456758934332723336245738884968...
INFINITE SERIES.
(1) z = 1/4 + 1/4^2 + 3/4^3 + 1/4^4 + 19/4^5 + 25/4^6 + 11/4^8 + 161/4^9 + 227/4^10 + 681/4^11 + 1019/4^12 +...+ A002380(n)/4^n +...
(2) 3 - z = 1/2 + 2/2^2 + 3/2^3 + 5/2^4 + 7/2^5 + 11/2^6 + 17/2^7 + 25/2^8 + 38/2^9 + 57/2^10 + 86/2^11 + 129/2^12 + 194/2^13 + 291/2^14 +...+ A002379(n)/2^n +...
where
3 - z = 2.60681152295035567550274178686109611414516...
CROSSREFS
Cf. A002379 ([(3/2)^n]), A002380 (3^n mod 2^n), A264919, A264920, A264921, A264922.
Sequence in context: A374242 A336501 A016674 * A091670 A375503 A201416
KEYWORD
nonn,cons
AUTHOR
Paul D. Hanna, Dec 03 2015
STATUS
approved