login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264916
Number of n-ascent sequences of length n with no consecutive repeated letters.
2
1, 1, 2, 12, 110, 1380, 21931, 422128, 9544164, 247924425, 7276062838, 238094692473, 8595519551905, 339369780700496, 14547197878632067, 672813893127964088, 33396560680565891888, 1770862858604836365591, 99902715110909008145856, 5974701996798223000294793
OFFSET
0,3
LINKS
S. Kitaev, J. Remmel, p-Ascent Sequences, arXiv:1503.00914 [math.CO], 2015.
FORMULA
a(n) = A264909(n,n).
a(n) ~ c * n! * d^n / n^(3/2), where d = 3.4022754519536669374151613210346790003... and c = 0.34285335011727623741388891327237... - Vaclav Kotesovec, Aug 14 2017
MAPLE
b:= proc(n, k, i, t) option remember; `if`(n<1, 1, add(
`if`(j=i, 0, b(n-1, k, j, t+`if`(j>i, 1, 0))), j=0..t+k))
end:
a:= n-> b(n-1, n, 0$2):
seq(a(n), n=0..25);
MATHEMATICA
b[n_, k_, i_, t_] := b[n, k, i, t] = If[n < 1, 1, Sum[If[j == i, 0, b[n - 1, k, j, t + If[j > i, 1, 0]]], {j, 0, t + k}]];
a[n_] := b[n - 1, n, 0, 0];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 09 2017, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A264909.
Sequence in context: A126778 A158832 A372158 * A296644 A235860 A317208
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 28 2015
STATUS
approved