login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372158
E.g.f. A(x) satisfies A(x) = exp( 2 * x * A(x)^(1/2) / (1 - x) ).
1
1, 2, 12, 110, 1368, 21602, 415036, 9416094, 246730448, 7340456258, 244615296564, 9030708939518, 365998814372824, 16159576541122146, 772216069907880812, 39715949460883093598, 2187682975276318552224, 128508919233259720967810
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: A(x) = exp( -2 * LambertW(-x / (1-x)) ).
If e.g.f. satisfies A(x) = exp( r*x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s ), then a(n) = r * n! * Sum_{k=0..n} (t*k+u*(n-k)+r)^(k-1) * binomial(n+(s-1)*k-1,n-k)/k!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-2*lambertw(-x/(1-x)))))
(PARI) a(n, r=2, s=1, t=1, u=0) = r*n!*sum(k=0, n, (t*k+u*(n-k)+r)^(k-1)*binomial(n+(s-1)*k-1, n-k)/k!);
CROSSREFS
Sequence in context: A217802 A126778 A158832 * A264916 A296644 A235860
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 20 2024
STATUS
approved