login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264915
Number of 10-ascent sequences of length n with no consecutive repeated letters.
2
1, 1, 10, 110, 1265, 15235, 191785, 2519605, 34494625, 491432590, 7276062838, 111816814439, 1781492191281, 29392907305322, 501677394880530, 8849027884862077, 161155012811798819, 3027460412190175918, 58617635130507630386, 1168800382939975874066
OFFSET
0,3
LINKS
S. Kitaev, J. Remmel, p-Ascent Sequences, arXiv:1503.00914 [math.CO], 2015.
MAPLE
b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
`if`(j=i, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+10))
end:
a:= n-> (b(n-1, 0$2)):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Sum[If[j == i, 0, b[n - 1, j, t + If[j > i, 1, 0]]], {j, 0, t + 10}]]; a[n_] := b[n - 1, 0, 0];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 09 2017, after Alois P. Heinz *)
CROSSREFS
Column k=10 of A264909.
Sequence in context: A343331 A057093 A055276 * A289414 A143749 A276507
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 28 2015
STATUS
approved