login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 10-ascent sequences of length n with no consecutive repeated letters.
2

%I #12 Nov 09 2017 11:39:18

%S 1,1,10,110,1265,15235,191785,2519605,34494625,491432590,7276062838,

%T 111816814439,1781492191281,29392907305322,501677394880530,

%U 8849027884862077,161155012811798819,3027460412190175918,58617635130507630386,1168800382939975874066

%N Number of 10-ascent sequences of length n with no consecutive repeated letters.

%H Alois P. Heinz, <a href="/A264915/b264915.txt">Table of n, a(n) for n = 0..200</a>

%H S. Kitaev, J. Remmel, <a href="https://arxiv.org/abs/1503.00914">p-Ascent Sequences</a>, arXiv:1503.00914 [math.CO], 2015.

%p b:= proc(n, i, t) option remember; `if`(n<1, 1, add(

%p `if`(j=i, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+10))

%p end:

%p a:= n-> (b(n-1, 0$2)):

%p seq(a(n), n=0..30);

%t b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Sum[If[j == i, 0, b[n - 1, j, t + If[j > i, 1, 0]]], {j, 0, t + 10}]]; a[n_] := b[n - 1, 0, 0];

%t Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Nov 09 2017, after _Alois P. Heinz_ *)

%Y Column k=10 of A264909.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Nov 28 2015