|
|
A201419
|
|
Decimal expansion of greatest x satisfying 8*x^2 = sec(x) and 0 < x < Pi.
|
|
3
|
|
|
1, 5, 1, 6, 4, 0, 9, 8, 4, 8, 1, 1, 1, 9, 3, 5, 5, 8, 9, 6, 3, 6, 2, 1, 8, 9, 4, 0, 7, 7, 5, 1, 9, 7, 0, 8, 0, 7, 6, 6, 7, 9, 5, 6, 1, 1, 8, 2, 4, 4, 3, 0, 6, 3, 4, 7, 6, 0, 8, 6, 1, 0, 3, 9, 9, 9, 5, 2, 4, 0, 4, 5, 1, 7, 0, 0, 0, 1, 2, 8, 9, 8, 1, 1, 2, 1, 9, 0, 3, 9, 7, 8, 2, 8, 9, 3, 9, 6, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
See A201397 for a guide to related sequences. The Mathematica program includes a graph.
|
|
LINKS
|
Table of n, a(n) for n=1..99.
|
|
EXAMPLE
|
least: 0.365868442181046909444887950918036646081...
greatest: 1.5164098481119355896362189407751970807...
|
|
MATHEMATICA
|
a = 8; c = 0;
f[x_] := a*x^2 + c; g[x_] := Sec[x]
Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
RealDigits[r] (* A201418 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
RealDigits[r] (* A201419 *)
|
|
CROSSREFS
|
Cf. A201397.
Sequence in context: A088401 A077491 A086231 * A163336 A173898 A343344
Adjacent sequences: A201416 A201417 A201418 * A201420 A201421 A201422
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Clark Kimberling, Dec 01 2011
|
|
STATUS
|
approved
|
|
|
|