The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091672 Decimal expansion of (4*(18+12*sqrt(2)-10*sqrt(3)-7*sqrt(6))*EllipticK((2-sqrt(3))^2*(-sqrt(2)+sqrt(3))^2)^2)/Pi^2. 3
 5, 0, 5, 4, 6, 2, 0, 1, 9, 7, 1, 7, 3, 2, 6, 0, 0, 6, 0, 5, 2, 0, 0, 4, 0, 5, 3, 2, 2, 7, 1, 4, 0, 2, 5, 9, 9, 8, 5, 1, 2, 9, 0, 1, 4, 8, 1, 7, 4, 2, 0, 8, 9, 2, 1, 8, 8, 9, 9, 3, 4, 8, 7, 8, 8, 6, 0, 2, 8, 7, 7, 3, 4, 5, 1, 1, 7, 3, 8, 1, 6, 8, 0, 0, 5, 3, 7, 2, 4, 7, 0, 6, 9, 8, 9, 6, 0, 3, 7, 9, 7, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Watson's third triple integral. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 D. H. Bailey, J. M. Borwein, V. Kapoor and E. Weisstein, Ten Problems in Experimental Mathematics Eric Weisstein's World of Mathematics, Watson's Triple Integrals EXAMPLE 0.505462019717326006052004053227140259985129014817420892188993487886... MAPLE evalf((4*(18+12*sqrt(2)-10*sqrt(3)-7*sqrt(6)))*EllipticK((2-sqrt(3))*(-sqrt(2)+sqrt(3)))^2/Pi^2, 120); # Vaclav Kotesovec, Apr 22 2015 MATHEMATICA RealDigits[ N[ (4*(18 + 12*Sqrt[2] - 10*Sqrt[3] - 7*Sqrt[6])*EllipticK[(2 - Sqrt[3])^2*(-Sqrt[2] + Sqrt[3])^2]^2)/Pi^2, 102]][[1]] (* Jean-François Alcover, Nov 12 2012, after Eric W. Weisstein *) CROSSREFS Cf. A091670, A091671. Sequence in context: A254289 A140240 A261839 * A144702 A238192 A156716 Adjacent sequences:  A091669 A091670 A091671 * A091673 A091674 A091675 KEYWORD nonn,cons AUTHOR Eric W. Weisstein, Jan 27 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 00:17 EDT 2021. Contains 345080 sequences. (Running on oeis4.)