login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144702
Numerators of triangle S(n,k), n>=0, 0<=k<=ceiling((3n+1)/2): S(n,k) is the coefficient of x^k in polynomial s_n(x), used to define continuous and n times differentiable sigmoidal transfer functions.
3
1, 1, 1, 1, -1, 1, 1, 0, -1, 1, 1, 5, 0, -5, 5, -3, 1, 21, 0, -35, 0, 63, -7, 15, 1, 3, 0, -7, 0, 21, -14, 15, -3, 1, 25, 0, -15, 0, 63, 0, -75, 45, -175, 2, 1, 55, 0, -165, 0, 231, 0, -825, 165, -1925, 22, -105, 1, 455, 0, -715, 0, 3861, 0, -2145, 0, 25025, -143, 12285, -65
OFFSET
0,12
COMMENTS
A sigmoidal transfer function sigma_n: R->[0,1] can be defined as sigma_n(x) = 1 if x>1, sigma_n(x) = s_n(x) if x in [0,1] and sigma_n(x) = 1-sigma_n(-x) if x<0.
REFERENCES
A. P. Heinz: Yes, trees may have neurons. In Computer Science in Perspective, R. Klein, H. Six and L. Wegner, Editors Lecture Notes In Computer Science 2598. Springer-Verlag New York, New York, NY, 2003, pages 179-190.
FORMULA
See program.
EXAMPLE
1/2, 1/2, 1/2, 1, -1/2, 1/2, 1, 0, -1, 1/2, 1/2, 5/4, 0, -5/2, 5/2, -3/4, 1/2, 21/16, 0, -35/16, 0, 63/16, -7/2, 15/16, 1/2, 3/2, 0, -7/2, 0, 21/2, -14, 15/2, -3/2 ... = A144702/A144703
As triangle:
1/2 1/2
1/2 1 -1/2
1/2 1 0 -1 1/2
1/2 5/4 0 -5/2 5/2 -3/4
1/2 21/16 0 -35/16 0 63/16 -7/2 15/16
1/2 3/2 0 -7/2 0 21/2 -14 15/2 -3/2
1/2 25/16 0 -15/4 0 63/8 0 -75/4 45/2 -175/16 2
...
MAPLE
s:= proc(n) option remember; local t, u, f, i, x; u:= floor(n/2); t:= u+n+1; f:= unapply(simplify(1/2 +sum('cat(a||i) *x^i', 'i'=1..t) -sum('cat(a||(2*i)) *x^(2*i)', 'i'=1..u)), x); unapply(subs(solve({f(1)=1, seq((D@@i)(f)(1)=0, i=1..n)}, {seq(cat(a||i), i=1..t)}), 1/2 +sum('cat(a||i) *x^i', 'i'=1..t) -sum('cat(a||(2*i)) *x^(2*i)', 'i'=1..u)), x); end: seq(seq(numer(coeff(s(n)(x), x, k)), k=0..ceil((3*n+1)/2)), n=0..10);
MATHEMATICA
s[n_] := s[n] = Module[{t, u, f, i, x, a}, u = Floor[n/2]; t = u+n+1; f = Function[x, 1/2+Sum[a[i]*x^i, {i, 1, t}] - Sum[a[2*i]*x^(2i), {i, 1, u}]]; Function[x, 1/2+Sum[a[i]*x^i, {i, 1, t}] - Sum[a[2*i]*x^(2i), {i, 1, u}] /. First @ Solve[{f[1] == 1, Sequence @@ Table[Derivative[i][f][1] == 0, {i, 1, n}]}]]]; Table[Table[Numerator[Coefficient[s[n][x], x, k]], {k, 0, Ceiling[(3*n+1)/2]}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 13 2014, after Maple *)
CROSSREFS
Denominators of S(n,k): A144703.
Sequence in context: A140240 A261839 A091672 * A238192 A156716 A055510
KEYWORD
frac,tabf,sign,look
AUTHOR
Alois P. Heinz, Sep 19 2008
STATUS
approved