OFFSET
0,5
COMMENTS
Number of lattice paths in the first quadrant from (0,0) to (n,0) using only steps H=(1,0), U=(1,1) and D=(3,-1). Hankel transform has g.f. (1-x^3)/(1+x^4) (A132380 (n+3)).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: (1/(1-x)) * c(x^4/(1-x)^3), where c(x) is the g.f. of A000108.
a(n) = Sum_{k=0..floor(n/4)} binomial(n-k, 3*k)*A000108(k).
(n+4)*a(n) = 2*(2*n+5)*a(n-1) - 6*(n+1)*a(n-2) + 2*(2*n-1)*a(n-3) +3*(n-2)*a(n-4) - 2*(2*n-7)*a(n-5). - R. J. Mathar, Nov 16 2011
a(n) = b(n, 3), where b(n, m) = Sum_{k=0..floor(n/(m+1))} binomial(n-k, m*k)*A000108(k). - G. C. Greubel, Jun 15 2022
MATHEMATICA
PROG
(Magma) [(&+[Binomial(n-k, 3*k)*Catalan(k): k in [0..Floor(n/4)]]): n in [0..40]]; // G. C. Greubel, Jun 15 2022
(SageMath) [sum(binomial(n-k, 3*k)*catalan_number(k) for k in (0..(n//4))) for n in (0..40)] # G. C. Greubel, Jun 15 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 19 2008
STATUS
approved