login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144700
Generalized (3,-1) Catalan numbers.
3
1, 1, 1, 1, 2, 5, 11, 21, 38, 71, 141, 289, 591, 1195, 2410, 4897, 10051, 20763, 42996, 89139, 185170, 385809, 806349, 1689573, 3547152, 7459715, 15714655, 33161821, 70095642, 148388521, 314562189, 667682057, 1418942341
OFFSET
0,5
COMMENTS
Number of lattice paths in the first quadrant from (0,0) to (n,0) using only steps H=(1,0), U=(1,1) and D=(3,-1). Hankel transform has g.f. (1-x^3)/(1+x^4) (A132380 (n+3)).
FORMULA
G.f.: (1/(1-x)) * c(x^4/(1-x)^3), where c(x) is the g.f. of A000108.
a(n) = Sum_{k=0..floor(n/4)} binomial(n-k, 3*k)*A000108(k).
(n+4)*a(n) = 2*(2*n+5)*a(n-1) - 6*(n+1)*a(n-2) + 2*(2*n-1)*a(n-3) +3*(n-2)*a(n-4) - 2*(2*n-7)*a(n-5). - R. J. Mathar, Nov 16 2011
a(n) = b(n, 3), where b(n, m) = Sum_{k=0..floor(n/(m+1))} binomial(n-k, m*k)*A000108(k). - G. C. Greubel, Jun 15 2022
MATHEMATICA
b[n_, m_]:=a[n, m]=Sum[Binomial[n-k, m*k]*CatalanNumber[k], {k, 0, Floor[n/(m+1)]}];
A144700[n_]:= b[n, 3]; (* A014137 (m=0), A090344 (m=1), A023431 (m=2) *)
Table[A144700[n], {n, 0, 40}] (* G. C. Greubel, Jun 15 2022 *)
PROG
(Magma) [(&+[Binomial(n-k, 3*k)*Catalan(k): k in [0..Floor(n/4)]]): n in [0..40]]; // G. C. Greubel, Jun 15 2022
(SageMath) [sum(binomial(n-k, 3*k)*catalan_number(k) for k in (0..(n//4))) for n in (0..40)] # G. C. Greubel, Jun 15 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 19 2008
STATUS
approved