login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144701
Hankel transform of expansion of 1/c(x)^3, c(x) the g.f. of A000108.
1
1, -9, 26, -25, -36, 133, -132, -81, 375, -374, -144, 806, -805, -225, 1480, -1479, -324, 2451, -2450, -441, 3773, -3772, -576, 5500, -5499, -729, 7686, -7685, -900, 10385, -10384, -1089, 13651, -13650, -1296, 17538, -17537
OFFSET
0,2
COMMENTS
Hankel transform of A115142.
LINKS
FORMULA
G.f.: (1+x)*(1-x)*(1-5*x+x^2)/(1+x+x^2)^4.
a(n) = (6 - 7*n - 9*n^2 - 2*n^3)*cos(2*Pi*n/3)/6 - sqrt(3)*(42 + 55*n + 21*n^2 + 2*n^3)*sin(2*Pi*n/3)/18.
MATHEMATICA
LinearRecurrence[{-4, -10, -16, -19, -16, -10, -4, -1}, {1, -9, 26, -25, -36, 133, -132, -81}, 40] (* G. C. Greubel, Jun 16 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x^2)*(1-5*x+x^2)/(1+x+x^2)^4 )); // G. C. Greubel, Jun 16 2022
(SageMath)
def A144701_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x^2)*(1-5*x+x^2)/(1+x+x^2)^4 ).list()
A144701_list(40) # G. C. Greubel, Jun 16 2022
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Sep 19 2008
STATUS
approved