Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jun 16 2022 02:01:34
%S 1,-9,26,-25,-36,133,-132,-81,375,-374,-144,806,-805,-225,1480,-1479,
%T -324,2451,-2450,-441,3773,-3772,-576,5500,-5499,-729,7686,-7685,-900,
%U 10385,-10384,-1089,13651,-13650,-1296,17538,-17537
%N Hankel transform of expansion of 1/c(x)^3, c(x) the g.f. of A000108.
%C Hankel transform of A115142.
%H G. C. Greubel, <a href="/A144701/b144701.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (-4,-10,-16,-19,-16,-10,-4,-1).
%F G.f.: (1+x)*(1-x)*(1-5*x+x^2)/(1+x+x^2)^4.
%F a(n) = (6 - 7*n - 9*n^2 - 2*n^3)*cos(2*Pi*n/3)/6 - sqrt(3)*(42 + 55*n + 21*n^2 + 2*n^3)*sin(2*Pi*n/3)/18.
%t LinearRecurrence[{-4,-10,-16,-19,-16,-10,-4,-1}, {1,-9,26,-25,-36,133,-132,-81}, 40] (* _G. C. Greubel_, Jun 16 2022 *)
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x^2)*(1-5*x+x^2)/(1+x+x^2)^4 )); // _G. C. Greubel_, Jun 16 2022
%o (SageMath)
%o def A144701_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( (1-x^2)*(1-5*x+x^2)/(1+x+x^2)^4 ).list()
%o A144701_list(40) # _G. C. Greubel_, Jun 16 2022
%Y Cf. A000108, A099504, A115142, A128504.
%K easy,sign
%O 0,2
%A _Paul Barry_, Sep 19 2008