login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099504
Expansion of 1/(1-5*x+x^3).
5
1, 5, 25, 124, 615, 3050, 15126, 75015, 372025, 1844999, 9149980, 45377875, 225044376, 1116071900, 5534981625, 27449863749, 136133246845, 675131252600, 3348206399251, 16604898749410, 82349362494450, 408398606072999
OFFSET
0,2
COMMENTS
A transform of A000351 under the mapping g(x)->(1/(1+x^3))g(x/(1+x^3)).
FORMULA
a(n) = 5*a(n-1) - a(n-3).
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k)*(-1)^k*5^(n-3*k).
MAPLE
A099504:=n->sum(binomial(n-2*i, i)*(-1)^i*5^(n-3*i), i=0..floor(n/3)); seq(A099504(n), n=0..30); # Wesley Ivan Hurt, Dec 03 2013
MATHEMATICA
Table[Sum[Binomial[n-2*i, i]*(-1)^i*5^(n-3*i), {i, 0, Floor[n/3]}], {n, 0, 30}] (* Wesley Ivan Hurt, Dec 03 2013 *)
LinearRecurrence[{5, 0, -1}, {1, 5, 25}, 30] (* G. C. Greubel, Aug 03 2023 *)
PROG
(Magma) [n le 3 select 5^(n-1) else 5*Self(n-1) -Self(n-3): n in [1..30]]; // G. C. Greubel, Aug 03 2023
(SageMath)
@CachedFunction
def a(n): # a = A099504
if (n<3): return 5^n
else: return 5*a(n-1) - a(n-3)
[a(n) for n in range(31)] # G. C. Greubel, Aug 03 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 20 2004
STATUS
approved