OFFSET
0,2
COMMENTS
A transform of A000351 under the mapping g(x)->(1/(1+x^3))g(x/(1+x^3)).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,0,-1).
FORMULA
a(n) = 5*a(n-1) - a(n-3).
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k)*(-1)^k*5^(n-3*k).
MAPLE
A099504:=n->sum(binomial(n-2*i, i)*(-1)^i*5^(n-3*i), i=0..floor(n/3)); seq(A099504(n), n=0..30); # Wesley Ivan Hurt, Dec 03 2013
MATHEMATICA
Table[Sum[Binomial[n-2*i, i]*(-1)^i*5^(n-3*i), {i, 0, Floor[n/3]}], {n, 0, 30}] (* Wesley Ivan Hurt, Dec 03 2013 *)
LinearRecurrence[{5, 0, -1}, {1, 5, 25}, 30] (* G. C. Greubel, Aug 03 2023 *)
PROG
(Magma) [n le 3 select 5^(n-1) else 5*Self(n-1) -Self(n-3): n in [1..30]]; // G. C. Greubel, Aug 03 2023
(SageMath)
@CachedFunction
def a(n): # a = A099504
if (n<3): return 5^n
else: return 5*a(n-1) - a(n-3)
[a(n) for n in range(31)] # G. C. Greubel, Aug 03 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 20 2004
STATUS
approved