login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of triangle S(n,k), n>=0, 0<=k<=ceiling((3n+1)/2): S(n,k) is the coefficient of x^k in polynomial s_n(x), used to define continuous and n times differentiable sigmoidal transfer functions.
3

%I #34 Jul 19 2023 18:56:49

%S 1,1,1,1,-1,1,1,0,-1,1,1,5,0,-5,5,-3,1,21,0,-35,0,63,-7,15,1,3,0,-7,0,

%T 21,-14,15,-3,1,25,0,-15,0,63,0,-75,45,-175,2,1,55,0,-165,0,231,0,

%U -825,165,-1925,22,-105,1,455,0,-715,0,3861,0,-2145,0,25025,-143,12285,-65

%N Numerators of triangle S(n,k), n>=0, 0<=k<=ceiling((3n+1)/2): S(n,k) is the coefficient of x^k in polynomial s_n(x), used to define continuous and n times differentiable sigmoidal transfer functions.

%C A sigmoidal transfer function sigma_n: R->[0,1] can be defined as sigma_n(x) = 1 if x>1, sigma_n(x) = s_n(x) if x in [0,1] and sigma_n(x) = 1-sigma_n(-x) if x<0.

%D A. P. Heinz: Yes, trees may have neurons. In Computer Science in Perspective, R. Klein, H. Six and L. Wegner, Editors Lecture Notes In Computer Science 2598. Springer-Verlag New York, New York, NY, 2003, pages 179-190.

%H Alois P. Heinz, <a href="/A144702/b144702.txt">Rows n = 0..114, flattened</a>

%H Alois P. Heinz, <a href="/A144702/a144702.gif">Animation of sigma_n(x) and their derivatives for n=0..15</a>

%F See program.

%e 1/2, 1/2, 1/2, 1, -1/2, 1/2, 1, 0, -1, 1/2, 1/2, 5/4, 0, -5/2, 5/2, -3/4, 1/2, 21/16, 0, -35/16, 0, 63/16, -7/2, 15/16, 1/2, 3/2, 0, -7/2, 0, 21/2, -14, 15/2, -3/2 ... = A144702/A144703

%e As triangle:

%e 1/2 1/2

%e 1/2 1 -1/2

%e 1/2 1 0 -1 1/2

%e 1/2 5/4 0 -5/2 5/2 -3/4

%e 1/2 21/16 0 -35/16 0 63/16 -7/2 15/16

%e 1/2 3/2 0 -7/2 0 21/2 -14 15/2 -3/2

%e 1/2 25/16 0 -15/4 0 63/8 0 -75/4 45/2 -175/16 2

%e ...

%p s:= proc(n) option remember; local t,u,f,i,x; u:= floor(n/2); t:= u+n+1; f:= unapply(simplify(1/2 +sum('cat(a||i) *x^i', 'i'=1..t) -sum('cat(a||(2*i)) *x^(2*i)', 'i'=1..u)), x); unapply(subs(solve({f(1)=1, seq((D@@i)(f)(1)=0, i=1..n)}, {seq(cat(a||i), i=1..t)}), 1/2 +sum('cat(a||i) *x^i', 'i'=1..t) -sum('cat(a||(2*i)) *x^(2*i)', 'i'=1..u)), x); end: seq(seq(numer(coeff(s(n)(x), x,k)), k=0..ceil((3*n+1)/2)), n=0..10);

%t s[n_] := s[n] = Module[{t, u, f, i, x, a}, u = Floor[n/2]; t = u+n+1; f = Function[x, 1/2+Sum[a[i]*x^i, {i, 1, t}] - Sum[a[2*i]*x^(2i), {i, 1, u}]]; Function[x, 1/2+Sum[a[i]*x^i, {i, 1, t}] - Sum[a[2*i]*x^(2i), {i, 1, u}] /. First @ Solve[{f[1] == 1, Sequence @@ Table[Derivative[i][f][1] == 0, {i, 1, n}]}]]]; Table[Table[Numerator[Coefficient[s[n][x], x, k]], {k, 0, Ceiling[(3*n+1)/2]}], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Feb 13 2014, after Maple *)

%Y Denominators of S(n,k): A144703.

%Y Cf. A144815, A144816.

%K frac,tabf,sign,look

%O 0,12

%A _Alois P. Heinz_, Sep 19 2008