login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242761 Decimal expansion of the escape probability for a random walk on the 3-D cubic lattice (a Polya random walk constant). 3
6, 5, 9, 4, 6, 2, 6, 7, 0, 4, 4, 9, 0, 0, 0, 8, 5, 7, 1, 7, 3, 7, 2, 6, 8, 1, 5, 5, 6, 7, 0, 9, 7, 1, 0, 3, 2, 8, 9, 3, 9, 1, 7, 8, 2, 8, 7, 5, 6, 9, 7, 9, 0, 2, 2, 3, 6, 7, 6, 3, 8, 9, 4, 6, 2, 2, 2, 0, 8, 0, 3, 0, 5, 4, 1, 0, 3, 7, 6, 1, 5, 3, 5, 7, 4, 7, 1, 9, 1, 8, 1, 1, 0, 9, 4, 2, 8, 6, 9, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9, p. 322.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

Eric Weisstein's MathWorld, Polya's Random Walk Constants

FORMULA

Equals (16*sqrt(2/3)*Pi^3)/(Gamma(1/24)*Gamma(5/24)*Gamma(7/24)*Gamma(11/24)), where Gamma is the Euler Gamma function.

EXAMPLE

0.6594626704490008571737268155670971...

MATHEMATICA

p = (16*Sqrt[2/3]*Pi^3)/(Gamma[1/24]*Gamma[5/24]*Gamma[7/24]*Gamma[11/24]); RealDigits[p, 10, 100] // First

PROG

(PARI) default(realprecision, 100); (16*sqrt(2/3)*Pi^3)/(gamma(1/24)* gamma(5/24)*gamma(7/24)*gamma(11/24)) \\ G. C. Greubel, Oct 26 2018

(MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); (16*Sqrt(2/3)*Pi(R)^3)/(Gamma(1/24)*Gamma(5/24)*Gamma(7/24)*Gamma(11/24)); // G. C. Greubel, Oct 26 2018

CROSSREFS

Cf. A086230, A086231, A086232-A086236, A043546, A293237, A293238, A242812-A242816.

Sequence in context: A196760 A199949 A165227 * A200477 A269768 A073230

Adjacent sequences:  A242758 A242759 A242760 * A242762 A242763 A242764

KEYWORD

nonn,cons

AUTHOR

Jean-Fran├žois Alcover, May 22 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 9 05:53 EDT 2022. Contains 356016 sequences. (Running on oeis4.)