login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242812
Decimal expansion of the expected number of returns to the origin of a random walk on a 4-d lattice.
8
1, 2, 3, 9, 4, 6, 7, 1, 2, 1, 8, 4, 8, 4, 8, 1, 7, 1, 2, 6, 7, 8, 6, 9, 7, 6, 6, 4, 8, 5, 9, 0, 0, 0, 7, 1, 0, 1, 5, 3, 2, 8, 9, 0, 6, 9, 1, 6, 1, 7, 5, 8, 6, 5, 6, 9, 5, 3, 4, 0, 1, 8, 5, 0, 7, 1, 6, 2, 8, 1, 3, 3, 8, 6, 5, 5, 5, 6, 3, 3, 3, 1, 0, 3, 2, 3, 9, 3, 3, 0, 4, 7, 3, 5, 3, 8, 9, 3, 9, 2, 8, 5, 9, 9, 1, 8
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9 Polya's random walk constants, p. 323.
LINKS
Eric Weisstein's World of Mathematics, Pólya's Random Walk Constants.
FORMULA
m(d) = d/(2*Pi)^d*multipleIntegral(-Pi..Pi) (d-sum_(k=1..d) cos(t_k))^(-1) dt_1 dt_2 ... dt_d, where d is the lattice dimension.
m(d) = Integral_(t>0) exp(-t)*BesselI(0,t/d)^d dt where BesselI(0,x) is the zeroth modified Bessel function.
Equals 1/(1 - A086232). - Amiram Eldar, Aug 28 2020
EXAMPLE
1.239467121848481712678697664859...
MAPLE
m4:= int(exp(-t)*BesselI(0, t/4)^4, t=0..infinity):
s:= convert(evalf(m4, 120), string):
map(parse, subs("."=NULL, [seq(i, i=s)]))[]; # Alois P. Heinz, May 23 2014
MATHEMATICA
digits = 50; NIntegrate[BesselI[0, t/4]^4*Exp[-t], {t, 0, Infinity}, PrecisionGoal -> digits, WorkingPrecision -> 350] // RealDigits [#, 10, digits]& // First (* after Ryan Propper *)
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
More terms from Alois P. Heinz, May 23 2014
STATUS
approved