login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120703
Decimal expansion of limiting difference of n - Sum_{k=0..n} cos(Pi/2^k).
1
2, 3, 9, 4, 6, 4, 9, 8, 0, 2, 1, 2, 5, 1, 6, 5, 5, 5, 9, 2, 2, 1, 0, 0, 3, 1, 4, 2, 7, 1, 2, 0, 7, 3, 0, 9, 3, 9, 1, 1, 5, 4, 7, 1, 9, 2, 5, 6, 1, 2, 3, 0, 4, 1, 2, 3, 0, 8, 3, 0, 9, 3, 8, 4, 5, 8, 3, 3, 3, 3, 8, 1, 5, 8, 8, 5, 8, 9, 1, 8, 6, 9, 9, 3, 8, 4, 9
OFFSET
1,1
LINKS
FORMULA
Lim_{n->oo} (n - Sum_{k=0..n} cos(Pi/2^k)).
Equals -1 + 2*Sum_{k=0..oo} (sin(2*Pi/2^k))^2. - G. C. Greubel, Aug 25 2023
EXAMPLE
2.3946498021251655592210031427120730939115471925612304123083093845833338...
MATHEMATICA
N[n - Sum[Cos[Pi/2^k], {k, 0, n}] /. n -> 300, 80] RealDigits[%, 10]
RealDigits[-1 +2*Sum[Sin[2*Pi/2^k]^2, {k, 0, 1000}], 10, 155][[1]] (* G. C. Greubel, Aug 25 2023 *)
PROG
(Magma) R:= RealField(151); -1 + 2*(&+[ Sin(Pi(R)/2^(k-1))^2 : k in [0..1000]]) // G. C. Greubel, Aug 25 2023
(SageMath) numerical_approx( -1 + 2*sum( sin(pi/2^(k-1))^2 for k in range(1001)), digits=150) # G. C. Greubel, Aug 25 2023
CROSSREFS
Sequence in context: A160388 A358057 A026195 * A222120 A242812 A374494
KEYWORD
cons,nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Jun 28 2006
EXTENSIONS
More digits from Jon E. Schoenfield, Mar 21 2021
STATUS
approved