OFFSET
1,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
FORMULA
Lim_{n->oo} (n - Sum_{k=0..n} cos(Pi/2^k)).
Equals -1 + 2*Sum_{k=0..oo} (sin(2*Pi/2^k))^2. - G. C. Greubel, Aug 25 2023
EXAMPLE
2.3946498021251655592210031427120730939115471925612304123083093845833338...
MATHEMATICA
N[n - Sum[Cos[Pi/2^k], {k, 0, n}] /. n -> 300, 80] RealDigits[%, 10]
RealDigits[-1 +2*Sum[Sin[2*Pi/2^k]^2, {k, 0, 1000}], 10, 155][[1]] (* G. C. Greubel, Aug 25 2023 *)
PROG
(Magma) R:= RealField(151); -1 + 2*(&+[ Sin(Pi(R)/2^(k-1))^2 : k in [0..1000]]) // G. C. Greubel, Aug 25 2023
(SageMath) numerical_approx( -1 + 2*sum( sin(pi/2^(k-1))^2 for k in range(1001)), digits=150) # G. C. Greubel, Aug 25 2023
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Jun 28 2006
EXTENSIONS
More digits from Jon E. Schoenfield, Mar 21 2021
STATUS
approved