login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242760 Decimal expansion of the odd limit of the harmonic power tower (1/2)^(1/3)^...^(1/(2n+1)). 1
6, 9, 0, 3, 4, 7, 1, 2, 6, 1, 1, 4, 9, 6, 4, 3, 1, 9, 4, 6, 7, 3, 2, 8, 4, 3, 8, 4, 6, 4, 1, 8, 9, 4, 2, 4, 4, 3, 9, 8, 3, 3, 1, 9, 7, 3, 8, 2, 7, 2, 6, 7, 0, 0, 2, 8, 9, 6, 1, 3, 1, 9, 1, 6, 4, 3, 6, 5, 0, 1, 5, 3, 5, 2, 8, 9, 1, 1, 5, 3, 3, 4, 9, 3, 8, 6, 7, 7, 1, 3, 2, 9, 5, 5, 0, 2, 8, 4, 4, 5, 8, 2, 4, 7, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The harmonic power tower sequence is divergent in the sense that even and odd partial exponentials converge to distinct limits. [after Steven Finch]

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.11, p. 449.

LINKS

Table of n, a(n) for n=0..104.

Eric Weisstein's MathWorld, Power Tower

EXAMPLE

0.6903471261149643194673284384641894244398...

MATHEMATICA

digits = 40; dn = 10; $RecursionLimit = 1000; Clear[h]; h[n_] := h[n] = Power @@ (1/Range[2, n]); h[dn + 1]; h[n = 2*dn + 1]; While[RealDigits[h[n], 10, digits] != RealDigits[h[n - dn], 10, digits], Print["n = ", n]; n = n + dn]; RealDigits[h[n], 10, digits] // First

CROSSREFS

Cf. A242759.

Sequence in context: A198118 A195102 A020792 * A196607 A200015 A298517

Adjacent sequences:  A242757 A242758 A242759 * A242761 A242762 A242763

KEYWORD

nonn,cons

AUTHOR

Jean-Fran├žois Alcover, May 22 2014

EXTENSIONS

More terms from Alois P. Heinz, May 22 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 09:29 EDT 2019. Contains 328056 sequences. (Running on oeis4.)