login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196607 Decimal expansion of the least x>0 satisfying sec(x)=6x. 5
1, 6, 9, 0, 7, 7, 6, 4, 7, 3, 9, 8, 0, 1, 5, 1, 4, 9, 9, 9, 5, 2, 9, 5, 3, 6, 7, 6, 7, 2, 6, 2, 7, 8, 1, 0, 7, 4, 2, 1, 3, 4, 0, 7, 6, 9, 6, 9, 6, 5, 3, 7, 1, 7, 0, 5, 6, 2, 1, 0, 6, 7, 7, 0, 2, 8, 1, 3, 5, 0, 2, 5, 7, 5, 8, 9, 1, 6, 8, 6, 1, 8, 9, 9, 4, 5, 5, 6, 8, 0, 9, 5, 5, 1, 1, 9, 4, 7, 8, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
EXAMPLE
x=0.169077647398015149995295367672627810742134076969653717056...
MATHEMATICA
Plot[{1/x, Cos[x], 2 Cos[x], 3*Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}]
t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100]
RealDigits[t] (* A133868 *)
t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100]
RealDigits[t] (* A196603 *)
t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100]
RealDigits[t] (* A196604 *)
t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100]
RealDigits[t] (* A196605 *)
t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100]
RealDigits[t] (* A196606 *)
t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100]
RealDigits[t] (* A196607 *)
PROG
(PARI) solve(x=0, 1, 6*x*cos(x)-1) \\ Charles R Greathouse IV, Aug 23 2021
CROSSREFS
Sequence in context: A195102 A020792 A242760 * A200015 A298517 A199451
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 04 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 8 11:34 EDT 2023. Contains 363164 sequences. (Running on oeis4.)