|
|
A196607
|
|
Decimal expansion of the least x>0 satisfying sec(x)=6x.
|
|
5
|
|
|
1, 6, 9, 0, 7, 7, 6, 4, 7, 3, 9, 8, 0, 1, 5, 1, 4, 9, 9, 9, 5, 2, 9, 5, 3, 6, 7, 6, 7, 2, 6, 2, 7, 8, 1, 0, 7, 4, 2, 1, 3, 4, 0, 7, 6, 9, 6, 9, 6, 5, 3, 7, 1, 7, 0, 5, 6, 2, 1, 0, 6, 7, 7, 0, 2, 8, 1, 3, 5, 0, 2, 5, 7, 5, 8, 9, 1, 6, 8, 6, 1, 8, 9, 9, 4, 5, 5, 6, 8, 0, 9, 5, 5, 1, 1, 9, 4, 7, 8, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
EXAMPLE
|
x=0.169077647398015149995295367672627810742134076969653717056...
|
|
MATHEMATICA
|
Plot[{1/x, Cos[x], 2 Cos[x], 3*Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}]
t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100]
t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100]
t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100]
t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100]
t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100]
t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100]
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|