login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196603 Decimal expansion of the least x>0 satisfying sec(x)=2x. 8
6, 1, 0, 0, 3, 1, 2, 8, 4, 4, 6, 4, 1, 7, 5, 9, 7, 5, 3, 7, 0, 9, 6, 3, 0, 7, 3, 5, 1, 3, 4, 1, 0, 3, 2, 4, 6, 7, 3, 7, 2, 0, 9, 7, 9, 1, 1, 2, 1, 6, 9, 2, 3, 7, 8, 6, 3, 7, 5, 1, 6, 0, 7, 5, 3, 2, 8, 0, 9, 4, 8, 8, 6, 1, 0, 5, 1, 0, 6, 8, 8, 7, 8, 1, 4, 2, 4, 4, 1, 6, 0, 3, 4, 4, 4, 4, 1, 2, 4, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
LINKS
EXAMPLE
x=0.61003128446417597537096307351341032...
MATHEMATICA
Plot[{1/x, Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}]
t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100]
RealDigits[t] (* A133868 *)
t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100]
RealDigits[t] (* A196603 *)
t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100]
RealDigits[t] (* A196604 *)
t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100]
RealDigits[t] (* A196605 *)
t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100]
RealDigits[t] (* A196606 *)
t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100]
RealDigits[t] (* A196607 *)
CROSSREFS
Cf. A196610.
Sequence in context: A212528 A059117 A340206 * A318458 A267479 A285824
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 04 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 02:30 EDT 2024. Contains 371756 sequences. (Running on oeis4.)