OFFSET
0,9
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
Wikipedia, Partition of a set
EXAMPLE
T(3,1) = 1: 123.
T(3,2) = 6: 1|23, 23|1, 2|13, 13|2, 3|12, 12|3.
T(3,3) = 1: 1|2|3.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 6, 1;
0, 1, 11, 18, 1;
0, 1, 30, 75, 40, 1;
0, 1, 52, 420, 350, 75, 1;
0, 1, 126, 1218, 3080, 1225, 126, 1;
0, 1, 219, 4242, 17129, 15750, 3486, 196, 1;
...
MAPLE
b:= proc(n, i, p) option remember; expand(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*x^j*combinat
[multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)):
seq(T(n), n=0..12);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Expand[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n-i*j, i-1, p+j]*x^j*multinomial[n, Join[{n-i*j}, Table[i, j]]]/ j!^2, {j, 0, n/i}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n, 0]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 28 2018, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 27 2017
STATUS
approved