login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285824
Number T(n,k) of ordered set partitions of [n] into k blocks such that equal-sized blocks are ordered with increasing least elements; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
14
1, 0, 1, 0, 1, 1, 0, 1, 6, 1, 0, 1, 11, 18, 1, 0, 1, 30, 75, 40, 1, 0, 1, 52, 420, 350, 75, 1, 0, 1, 126, 1218, 3080, 1225, 126, 1, 0, 1, 219, 4242, 17129, 15750, 3486, 196, 1, 0, 1, 510, 14563, 82488, 152355, 63756, 8526, 288, 1, 0, 1, 896, 42930, 464650, 1049895, 954387, 217560, 18600, 405, 1
OFFSET
0,9
LINKS
EXAMPLE
T(3,1) = 1: 123.
T(3,2) = 6: 1|23, 23|1, 2|13, 13|2, 3|12, 12|3.
T(3,3) = 1: 1|2|3.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 6, 1;
0, 1, 11, 18, 1;
0, 1, 30, 75, 40, 1;
0, 1, 52, 420, 350, 75, 1;
0, 1, 126, 1218, 3080, 1225, 126, 1;
0, 1, 219, 4242, 17129, 15750, 3486, 196, 1;
...
MAPLE
b:= proc(n, i, p) option remember; expand(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*x^j*combinat
[multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)):
seq(T(n), n=0..12);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Expand[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n-i*j, i-1, p+j]*x^j*multinomial[n, Join[{n-i*j}, Table[i, j]]]/ j!^2, {j, 0, n/i}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n, 0]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 28 2018, after Alois P. Heinz *)
CROSSREFS
Main diagonal and first lower diagonal give: A000012, A002411.
Row sums give A120774.
T(2n,n) gives A285926.
Sequence in context: A196603 A318458 A267479 * A269955 A376731 A198754
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 27 2017
STATUS
approved