login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285922
Number of ordered set partitions of [n] into seven blocks such that equal-sized blocks are ordered with increasing least elements.
3
1, 196, 8526, 217560, 4635939, 67454772, 877414538, 10742461730, 113528563148, 1132899916148, 10494458555126, 96114856972680, 831333224017303, 7005224782844764, 56197005110455286, 453234116137501160, 3555422918860518398, 27541742188014185824
OFFSET
7,2
LINKS
MAPLE
b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(x^j*b(n-i*j, i-1, p+j)*combinat
[multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i)), x, 8)
end:
a:= n-> coeff(b(n$2, 0), x, 7):
seq(a(n), n=7..30);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[x^j*b[n - i*j, i - 1, p + j]*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2, {j, 0, n/i}]], {x, 0, 8}] ;
a[n_] := Coefficient[b[n, n, 0], x, 7];
Table[a[n], {n, 7, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
CROSSREFS
Column k=7 of A285824.
Cf. A285858.
Sequence in context: A128990 A061619 A185900 * A285858 A203540 A006362
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 28 2017
STATUS
approved