login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285918
Number of ordered set partitions of [n] into three blocks such that equal-sized blocks are ordered with increasing least elements.
3
1, 18, 75, 420, 1218, 4242, 14563, 42930, 132528, 432960, 1250340, 3814629, 12073701, 35074482, 106044555, 331913202, 967193328, 2917846758, 9062084298, 26507831559, 79848170823, 246771097680, 723922691700, 2178960263415, 6709005218503, 19728686792637
OFFSET
3,2
LINKS
MAPLE
b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(x^j*b(n-i*j, i-1, p+j)*combinat
[multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i)), x, 4)
end:
a:= n-> coeff(b(n$2, 0), x, 3):
seq(a(n), n=3..30);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[x^j*b[n - i*j, i-1, p+j]*multinomial[n, Join[{n - i*j}, Table[i, j] ] ]/j!^2, {j, 0, n/i}]], {x, 0, 4}];
a[n_] := Coefficient[b[n, n, 0], x, 3];
Table[a[n], {n, 3, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
CROSSREFS
Column k=3 of A285824.
Cf. A285854.
Sequence in context: A284659 A143666 A139757 * A262402 A296363 A164603
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 28 2017
STATUS
approved