login
A285918
Number of ordered set partitions of [n] into three blocks such that equal-sized blocks are ordered with increasing least elements.
3
1, 18, 75, 420, 1218, 4242, 14563, 42930, 132528, 432960, 1250340, 3814629, 12073701, 35074482, 106044555, 331913202, 967193328, 2917846758, 9062084298, 26507831559, 79848170823, 246771097680, 723922691700, 2178960263415, 6709005218503, 19728686792637
OFFSET
3,2
LINKS
MAPLE
b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(x^j*b(n-i*j, i-1, p+j)*combinat
[multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i)), x, 4)
end:
a:= n-> coeff(b(n$2, 0), x, 3):
seq(a(n), n=3..30);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[x^j*b[n - i*j, i-1, p+j]*multinomial[n, Join[{n - i*j}, Table[i, j] ] ]/j!^2, {j, 0, n/i}]], {x, 0, 4}];
a[n_] := Coefficient[b[n, n, 0], x, 3];
Table[a[n], {n, 3, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
CROSSREFS
Column k=3 of A285824.
Cf. A285854.
Sequence in context: A284659 A143666 A139757 * A262402 A296363 A164603
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 28 2017
STATUS
approved