login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296363
a(1)=0; for n>1, a(n) = 4*n^3 - 3*n^2 - 3*n + 4.
2
0, 18, 76, 200, 414, 742, 1208, 1836, 2650, 3674, 4932, 6448, 8246, 10350, 12784, 15572, 18738, 22306, 26300, 30744, 35662, 41078, 47016, 53500, 60554, 68202, 76468, 85376, 94950, 105214, 116192, 127908, 140386, 153650, 167724, 182632, 198398, 215046, 232600
OFFSET
1,2
COMMENTS
This was once thought (mistakenly) to be a formula for A262402.
FORMULA
G.f.: -2 * (x^3-2*x^2-2*x-9) * x^2 / (x-1)^4.
MATHEMATICA
CoefficientList[Series[- 2 x (x^3 - 2 x^2 - 2 x - 9)/(x - 1)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Sep 23 2015 *)
Join[{0}, LinearRecurrence[{4, -6, 4, -1}, {18, 76, 200, 414}, 38]] (* Ray Chandler, Sep 23 2015 *)
Join[{0}, Table[4n^3-3n^2-3n+4, {n, 2, 40}]] (* Harvey P. Dale, Mar 28 2019 *)
PROG
(Magma) [0] cat [4*n^3-3*n^2-3*n+4: n in [2..40]]; // Vincenzo Librandi, Sep 23 2015
(PARI) a(n)=if(n>1, 4*n^3 - 3*n^2 - 3*n + 4, 0) \\ Charles R Greathouse IV, Oct 18 2022
CROSSREFS
Cf. A262402.
Sequence in context: A139757 A285918 A262402 * A164603 A229714 A100187
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 16 2017
STATUS
approved