login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296361
Number of monohedral disk tilings of type C^t_{3,n}.
4
2, 62, 116, 200, 318, 476, 682, 946, 1272, 1674, 2152, 2724, 3394, 4176, 5078, 6110, 7284, 8614, 10108, 11784, 13646, 15716, 18002, 20522, 23288, 26314, 29616, 33212, 37114, 41344, 45910, 50838, 56140, 61838, 67948, 74488, 81478, 88940, 96890, 105354, 114344
OFFSET
1,1
LINKS
Joel Anthony Haddley, Stephen Worsley, Infinite families of monohedral disk tilings, arXiv:1512.03794v2 [math.MG], 2015-2016.
FORMULA
Conjectures from Colin Barker, Jan 09 2018: (Start)
G.f.: 2*x*(1 + 28*x - 33*x^2 - 10*x^3 + 34*x^4 - 16*x^5 - 26*x^6 + 35*x^7 + 8*x^8 - 32*x^9 + 13*x^10) / ((1 - x)^5*(1 + x)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - 3*a(n-6) + 2*a(n-7) + 2*a(n-8) - 3*a(n-9) + a(n-10) for n>11.
(End)
a(n) = 2*Sum_{i=0..6} A241926(i, n*(6-i)) for n > 1. - Andrew Howroyd, Jan 09 2018
MATHEMATICA
U[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[(n + k)/#, n/#]/(n + k) &];
a[1] = 2; a[n_] := 2*Sum[U[i, n*(6 - i)], {i, 0, 6}];
Array[a, 50] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *)
PROG
(PARI) \\ here U is A241926
U(n, k)={sumdiv(gcd(n, k), d, eulerphi(d)*binomial((n+k)/d, n/d)/(n+k))}
a(n)={2*if(n<2, n==1, sum(i=0, 6, U(i, n*(6-i))))} \\ Andrew Howroyd, Jan 09 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 15 2017
EXTENSIONS
Terms a(6) and beyond from Lars Blomberg, Jan 09 2018
STATUS
approved