OFFSET
1,1
LINKS
Lars Blomberg, Table of n, a(n) for n = 1..1000
Joel Anthony Haddley, Stephen Worsley, Infinite families of monohedral disk tilings, arXiv:1512.03794v2 [math.MG], 2015-2016.
FORMULA
Conjectures from Colin Barker, Jan 09 2018: (Start)
G.f.: 2*x*(1 + 28*x - 33*x^2 - 10*x^3 + 34*x^4 - 16*x^5 - 26*x^6 + 35*x^7 + 8*x^8 - 32*x^9 + 13*x^10) / ((1 - x)^5*(1 + x)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - 3*a(n-6) + 2*a(n-7) + 2*a(n-8) - 3*a(n-9) + a(n-10) for n>11.
(End)
a(n) = 2*Sum_{i=0..6} A241926(i, n*(6-i)) for n > 1. - Andrew Howroyd, Jan 09 2018
MATHEMATICA
U[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[(n + k)/#, n/#]/(n + k) &];
a[1] = 2; a[n_] := 2*Sum[U[i, n*(6 - i)], {i, 0, 6}];
Array[a, 50] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *)
PROG
(PARI) \\ here U is A241926
U(n, k)={sumdiv(gcd(n, k), d, eulerphi(d)*binomial((n+k)/d, n/d)/(n+k))}
a(n)={2*if(n<2, n==1, sum(i=0, 6, U(i, n*(6-i))))} \\ Andrew Howroyd, Jan 09 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 15 2017
EXTENSIONS
Terms a(6) and beyond from Lars Blomberg, Jan 09 2018
STATUS
approved