login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of monohedral disk tilings of type C^t_{3,n}.
4

%I #21 Jun 14 2018 05:15:58

%S 2,62,116,200,318,476,682,946,1272,1674,2152,2724,3394,4176,5078,6110,

%T 7284,8614,10108,11784,13646,15716,18002,20522,23288,26314,29616,

%U 33212,37114,41344,45910,50838,56140,61838,67948,74488,81478,88940,96890,105354,114344

%N Number of monohedral disk tilings of type C^t_{3,n}.

%H Lars Blomberg, <a href="/A296361/b296361.txt">Table of n, a(n) for n = 1..1000</a>

%H Joel Anthony Haddley, Stephen Worsley, <a href="https://arxiv.org/abs/1512.03794">Infinite families of monohedral disk tilings</a>, arXiv:1512.03794v2 [math.MG], 2015-2016.

%F Conjectures from _Colin Barker_, Jan 09 2018: (Start)

%F G.f.: 2*x*(1 + 28*x - 33*x^2 - 10*x^3 + 34*x^4 - 16*x^5 - 26*x^6 + 35*x^7 + 8*x^8 - 32*x^9 + 13*x^10) / ((1 - x)^5*(1 + x)*(1 + x + x^2 + x^3 + x^4)).

%F a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - 3*a(n-6) + 2*a(n-7) + 2*a(n-8) - 3*a(n-9) + a(n-10) for n>11.

%F (End)

%F a(n) = 2*Sum_{i=0..6} A241926(i, n*(6-i)) for n > 1. - _Andrew Howroyd_, Jan 09 2018

%t U[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[(n + k)/#, n/#]/(n + k) &];

%t a[1] = 2; a[n_] := 2*Sum[U[i, n*(6 - i)], {i, 0, 6}];

%t Array[a, 50] (* _Jean-François Alcover_, Jun 14 2018, after _Andrew Howroyd_ *)

%o (PARI) \\ here U is A241926

%o U(n,k)={sumdiv(gcd(n,k), d, eulerphi(d)*binomial((n+k)/d, n/d)/(n+k))}

%o a(n)={2*if(n<2, n==1, sum(i=0, 6, U(i,n*(6-i))))} \\ _Andrew Howroyd_, Jan 09 2018

%Y Cf. A241926, A296359, A296360, A296362.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Dec 15 2017

%E Terms a(6) and beyond from _Lars Blomberg_, Jan 09 2018