login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285926
Number of ordered set partitions of [2n] into n blocks such that equal-sized blocks are ordered with increasing least elements.
3
1, 1, 11, 420, 17129, 1049895, 97141022, 10742461730, 1370094506209, 207877406991111, 36104901766271975, 7033373902938469086, 1531762189401458287506, 368890302956243012167470, 97283928918541409263666020, 27895730515878936009534815250
OFFSET
0,3
LINKS
FORMULA
a(n) = A285824(2n,n).
MAPLE
b:= proc(n, i, p) option remember; expand(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(x^j*b(n-i*j, i-1, p+j)*combinat
[multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i)))
end:
a:= n-> coeff(b(2*n$2, 0), x, n):
seq(a(n), n=0..20);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Expand[If[n == 0 || i == 1, (p + n)!/n! x^n, Sum[b[n - i j, i - 1, p + j] x^j multinomial[n, Join[{n - i j}, Table[i, j]]]/j!^2, {j, 0, n/i}]]];
a[n_] := Coefficient[b[2n, 2n, 0], x, n];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A180821 A361889 A364369 * A197599 A197983 A351611
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 28 2017
STATUS
approved