login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196604
Decimal expansion of the least x>0 satisfying sec(x)=3x.
6
3, 5, 5, 5, 7, 5, 9, 8, 9, 3, 4, 2, 9, 7, 3, 3, 7, 2, 6, 2, 5, 6, 5, 3, 1, 0, 8, 5, 6, 5, 7, 7, 5, 9, 4, 8, 9, 7, 8, 5, 5, 2, 1, 8, 5, 7, 5, 8, 9, 9, 3, 9, 3, 4, 5, 5, 1, 7, 0, 1, 2, 6, 5, 8, 7, 6, 7, 3, 7, 1, 2, 4, 6, 6, 5, 8, 8, 8, 1, 7, 6, 0, 4, 7, 7, 3, 4, 1, 0, 3, 8, 8, 9, 1, 9, 0, 8, 1, 7, 0
OFFSET
0,1
EXAMPLE
x=0.3555759893429733726256531085657759489...
MATHEMATICA
Plot[{1/x, Cos[x], 2 Cos[x], 3*Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}]
t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100]
RealDigits[t] (* A133868 *)
t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100]
RealDigits[t] (* A196603 *)
t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100]
RealDigits[t] (* A196604 *)
t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100]
RealDigits[t] (* A196605 *)
t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100]
RealDigits[t] (* A196606 *)
t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100]
RealDigits[t] (* A196607 *)
CROSSREFS
Sequence in context: A365677 A335138 A343691 * A131506 A113722 A141791
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 04 2011
STATUS
approved