login
A198118
Decimal expansion of least x having 2*x^2+x=4*cos(x).
3
1, 1, 6, 9, 0, 2, 2, 6, 9, 2, 3, 0, 5, 3, 9, 2, 9, 1, 0, 2, 1, 0, 1, 0, 0, 2, 2, 8, 8, 5, 2, 7, 8, 3, 0, 5, 6, 7, 1, 9, 3, 8, 9, 3, 3, 1, 6, 6, 1, 0, 8, 7, 0, 6, 8, 2, 3, 0, 0, 3, 7, 1, 1, 4, 0, 7, 6, 3, 3, 3, 7, 9, 1, 4, 0, 7, 8, 2, 0, 2, 5, 4, 9, 6, 7, 4, 5, 4, 2, 3, 5, 8, 9, 3, 3, 6, 0, 5, 0
OFFSET
1,3
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.1690226923053929102101002288527830...
greatest x: 0.89565238135842890121817647213537...
MATHEMATICA
a = 2; b = 1; c = 4;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.17, -1.16}, WorkingPrecision -> 110]
RealDigits[r1](* A198118 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110]
RealDigits[r2](* A198119 *)
CROSSREFS
Cf. A197737.
Sequence in context: A331480 A196762 A078196 * A195102 A020792 A242760
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 21 2011
STATUS
approved