login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198115 Decimal expansion of greatest x having 2*x^2+x=2*cos(x). 3
6, 6, 9, 9, 6, 8, 1, 6, 9, 0, 4, 6, 9, 3, 3, 1, 9, 1, 7, 5, 0, 9, 3, 9, 2, 8, 9, 5, 6, 2, 1, 6, 6, 2, 8, 7, 2, 9, 5, 4, 9, 4, 3, 5, 5, 1, 3, 5, 9, 1, 9, 9, 5, 8, 3, 7, 3, 0, 9, 3, 3, 7, 4, 7, 0, 7, 4, 6, 7, 7, 9, 1, 4, 4, 7, 9, 6, 2, 4, 3, 1, 3, 5, 0, 2, 7, 7, 8, 0, 6, 1, 6, 6, 2, 4, 5, 8, 4, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least x: -1.01705490067506096933116558361774...

greatest x: 0.66996816904693319175093928956216628...

MATHEMATICA

a = 2; b = 1; c = 2;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -2, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -1.02, -1.01}, WorkingPrecision -> 110]

RealDigits[r1](* A198114 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .66, .67}, WorkingPrecision -> 110]

RealDigits[r2](* A198115 *)

CROSSREFS

Cf. A197737.

Sequence in context: A198116 A200023 A337607 * A291545 A205372 A301690

Adjacent sequences:  A198112 A198113 A198114 * A198116 A198117 A198118

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 19:04 EDT 2020. Contains 337388 sequences. (Running on oeis4.)