login
A198112
Decimal expansion of least x having 2*x^2+x=cos(x).
3
8, 7, 0, 3, 1, 6, 3, 4, 1, 1, 7, 7, 4, 8, 7, 5, 3, 8, 6, 7, 2, 4, 0, 5, 2, 9, 2, 3, 4, 8, 1, 5, 0, 6, 1, 5, 2, 5, 6, 1, 6, 0, 7, 0, 2, 9, 9, 6, 8, 3, 2, 4, 5, 5, 8, 8, 1, 6, 7, 6, 2, 7, 6, 7, 6, 7, 2, 5, 5, 6, 9, 1, 4, 2, 2, 9, 5, 1, 2, 4, 2, 5, 4, 7, 8, 9, 3, 4, 4, 4, 8, 8, 5, 8, 5, 3, 5, 0, 8
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -0.870316341177487538672405292348150615...
greatest x: 0.4639023825974119097567031695353505...
MATHEMATICA
a = 2; b = 1; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -0.88, -0.87}, WorkingPrecision -> 110]
RealDigits[r1](* A198112 *)
r2 = x /.FindRoot[f[x] == g[x], {x, 4.6, 4.7}, WorkingPrecision -> 110]
RealDigits[r2](* A198113 *)
CROSSREFS
Cf. A197737.
Sequence in context: A051762 A247017 A330142 * A358938 A213007 A155094
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 21 2011
STATUS
approved