login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198114 Decimal expansion of least x having 2*x^2+x=2*cos(x). 3
1, 0, 1, 7, 0, 5, 4, 9, 0, 0, 6, 7, 5, 0, 6, 0, 9, 6, 9, 3, 3, 1, 1, 6, 5, 5, 8, 3, 6, 1, 7, 7, 4, 5, 8, 9, 4, 7, 7, 1, 6, 2, 8, 8, 7, 5, 9, 6, 6, 0, 1, 0, 6, 6, 4, 6, 7, 9, 0, 5, 9, 1, 1, 4, 9, 3, 0, 8, 5, 1, 5, 3, 9, 2, 6, 3, 6, 1, 5, 3, 4, 6, 0, 6, 7, 0, 2, 4, 6, 8, 6, 9, 6, 7, 9, 5, 3, 1, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least x: -1.01705490067506096933116558361774...

greatest x: 0.66996816904693319175093928956216628...

MATHEMATICA

a = 2; b = 1; c = 2;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -2, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -1.02, -1.01}, WorkingPrecision -> 110]

RealDigits[r1](* A198114 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .66, .67}, WorkingPrecision -> 110]

RealDigits[r2](* A198115 *)

CROSSREFS

Cf. A197737.

Sequence in context: A316167 A272037 A309724 * A293384 A193012 A264758

Adjacent sequences:  A198111 A198112 A198113 * A198115 A198116 A198117

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 30 03:03 EDT 2020. Contains 337432 sequences. (Running on oeis4.)