login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264758
An eventually quasi-cubic solution to Hofstadter's Q recurrence.
7
7, 0, 5, 9, 3, 8, 9, 2, 9, 9, 3, 14, 9, 3, 22, 9, 2, 18, 9, 3, 32, 9, 3, 54, 9, 2, 27, 9, 3, 59, 9, 3, 113, 9, 2, 36, 9, 3, 95, 9, 3, 208, 9, 2, 45, 9, 3, 140, 9, 3, 348, 9, 2, 54, 9, 3, 194, 9, 3, 542, 9, 2, 63, 9, 3, 257, 9, 3, 799, 9, 2, 72, 9, 3, 329, 9
OFFSET
1,1
COMMENTS
a(n) is the solution to the recurrence relation a(n) = a(n-a(n-1)) + a(n-a(n-2)) [Hofstadter's Q recurrence], with the initial conditions: a(n) = 0 if n <= 0; a(1) = 7, a(2) = 0, a(3) = 5, a(4) = 9, a(5) = 3, a(6) = 8, a(7) = 9, a(8) = 2, a(9) = 9, a(10) = 9, a(11) = 3.
LINKS
Nathan Fox, Quasipolynomial Solutions to the Hofstadter Q-Recurrence, arXiv preprint arXiv:1511.06484 [math.NT], 2015.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,-6,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,-1).
FORMULA
a(1) = 7, a(2) = 0; thereafter a(9*n) = 9*n, a(9*n+1) = 9, a(9*n+2) = 3, a(9*n+3) = 9/2*n^2+9/2*n+5, a(9*n+4) = 9, a(9*n+5) = 3, a(9*n+6) = 3/2*n^3+9/2*n^2+8*n+8, a(9*n+7) = 9, a(9*n+8) = 2.
From Colin Barker, Nov 14 2016: (Start)
G.f.: x*(7 +5*x^2 +9*x^3 +3*x^4 +8*x^5 +9*x^6 +2*x^7 +9*x^8 -19*x^9 +3*x^10 -6*x^11 -27*x^12 -9*x^13 -10*x^14 -27*x^15 -6*x^16 -18*x^17 +15*x^18 -9*x^19 +6*x^20 +27*x^21 +9*x^22 +14*x^23 +27*x^24 +6*x^25 +9*x^26 -x^27 +9*x^28 -5*x^29 -9*x^30 -3*x^31 -3*x^32 -9*x^33 -2*x^34 -2*x^36 -3*x^37) / ((1 -x)^4*(1 +x +x^2)^4*(1 +x^3 +x^6)^4).
a(n) = 4*a(n-9) - 6*a(n-18) + 4*a(n-27) - a(n-36) for n>38.
(End)
MATHEMATICA
CoefficientList[Series[x (7+5x^2+9x^3+3x^4+8x^5+9x^6+2x^7+9x^8- 19x^9+ 3x^10- 6x^11- 27x^12-9x^13- 10x^14- 27x^15-6x^16-18x^17+ 15x^18- 9x^19+6x^20+ 27x^21+9x^22+14x^23+ 27x^24+ 6x^25+ 9x^26-x^27+9x^28- 5x^29-9x^30-3x^31- 3x^32-9x^33-2x^34- 2x^36-3x^37)/((1-x)^4(1+x+x^2)^4 (1+x^3+x^6)^4), {x, 0, 100}], x] (* Harvey P. Dale, Aug 14 2021 *)
PROG
(PARI) a = [7, 0, 5, 9, 3, 8, 9, 2]; for(n=1, 10, a=concat(a, [9*n, 9, 3, 9/2*n^2+9/2*n+5, 9, 3, 3/2*n^3+9/2*n^2+8*n+8, 9, 2])); a
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Nathan Fox, Nov 23 2015
STATUS
approved