login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A264757 An eventually quasi-quadratic solution to Hofstadter's Q recurrence. 8
4, 0, 5, 6, 2, 6, 6, 3, 11, 6, 2, 12, 6, 3, 23, 6, 2, 18, 6, 3, 41, 6, 2, 24, 6, 3, 65, 6, 2, 30, 6, 3, 95, 6, 2, 36, 6, 3, 131, 6, 2, 42, 6, 3, 173, 6, 2, 48, 6, 3, 221, 6, 2, 54, 6, 3, 275, 6, 2, 60, 6, 3, 335, 6, 2, 66, 6, 3, 401, 6, 2, 72, 6, 3, 473, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) is the solution to the recurrence relation a(n) = a(n-a(n-1)) + a(n-a(n-2)) [Hofstadter's Q recurrence], with the initial conditions: a(n) = 0 if n <= 0; a(1) = 4, a(2) = 0, a(3) = 5, a(4) = 6, a(5) = 2, a(6) = 6, a(7) = 6, a(8) = 3.

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Nathan Fox, Quasipolynomial Solutions to the Hofstadter Q-Recurrence, arXiv preprint arXiv:1511.06484 [math.NT], 2015.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,3,0,0,0,0,0,-3,0,0,0,0,0,1).

FORMULA

a(1) = 4, a(2) = 0; thereafter a(6*n) = 6*n, a(6*n+1) = 6, a(6*n+2) = 3, a(6*n+3) = 3*n^2+3*n+5, a(6*n+4) = 6, a(6*n+5) = 2.

From Colin Barker, Nov 14 2016: (Start)

G.f.: x*(4 + 5*x^2 + 6*x^3 + 2*x^4 + 6*x^5 - 6*x^6 + 3*x^7 - 4*x^8 - 12*x^9 - 4*x^10 - 6*x^11 - 6*x^13 + 5*x^14 + 6*x^15 + 2*x^16 + 2*x^18 + 3*x^19) / ((1 - x)^3 * (1 + x)^3 * (1 - x + x^2)^3 * (1 + x + x^2)^3).

a(n) = 3*a(n-6) - 3*a(n-12) + a(n-18) for n>20.

(End)

MATHEMATICA

Table[If[n < 3, # - n - 1, #] &@ Switch[Mod[n, 6], 0, n, 1, 6, 2, 3, 3, 3 #^2 + 3 # + 5 &[(n - 3)/6], 4, 6, 5, 2], {n, 75}] (* or *)

Rest@ CoefficientList[Series[x (4 + 5 x^2 + 6 x^3 + 2 x^4 + 6 x^5 - 6 x^6 + 3 x^7 - 4 x^8 - 12 x^9 - 4 x^10 - 6 x^11 - 6 x^13 + 5 x^14 + 6 x^15 + 2 x^16 + 2 x^18 + 3 x^19)/((1 - x)^3*(1 + x)^3*(1 - x + x^2)^3*(1 + x + x^2)^3), {x, 0, 76}], x] (* Michael De Vlieger, Nov 14 2016 *)

PROG

(PARI) Vec(x*(4+5*x^2+6*x^3+2*x^4+6*x^5-6*x^6+3*x^7-4*x^8-12*x^9-4*x^10-6*x^11-6*x^13+5*x^14+6*x^15+2*x^16+2*x^18+3*x^19)/((1-x)^3*(1+x)^3*(1-x+x^2)^3*(1+x+x^2)^3) + O(x^100)) \\ Colin Barker, Nov 14 2016

CROSSREFS

Cf. A005185, A188670, A244477, A264756, A264758.

Sequence in context: A335775 A308108 A320374 * A195773 A153018 A102913

Adjacent sequences:  A264754 A264755 A264756 * A264758 A264759 A264760

KEYWORD

nonn,easy

AUTHOR

Nathan Fox, Nov 23 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 05:12 EST 2021. Contains 349419 sequences. (Running on oeis4.)