login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A308108 Sum of the largest side lengths of all integer-sided scalene triangles with perimeter n. 0
0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 5, 12, 6, 20, 14, 31, 23, 43, 35, 66, 48, 83, 73, 113, 91, 145, 123, 183, 157, 223, 197, 281, 239, 330, 300, 399, 351, 471, 423, 552, 498, 636, 582, 745, 669, 842, 782, 966, 882, 1094, 1010, 1234, 1142, 1378, 1286, 1554, 1434 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,9

LINKS

Table of n, a(n) for n=1..58.

Wikipedia, Integer Triangle

FORMULA

a(n) = Sum_{k=1..floor((n-1)/3)} Sum_{i=k+1..floor((n-k-1)/2)} sign(floor((i+k)/(n-i-k+1))) * (n-i-k).

Conjectures from Colin Barker, May 13 2019: (Start)

G.f.: x^9*(2 + x + x^2)^2 / ((1 - x)^4*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).

a(n) = -a(n-1) + 2*a(n-3) + 4*a(n-4) + 2*a(n-5) - a(n-6) - 5*a(n-7) - 5*a(n-8) - a(n-9) + 2*a(n-10) + 4*a(n-11) + 2*a(n-12) - a(n-14) - a(n-15) for n>15.

(End)

MATHEMATICA

Table[Sum[Sum[(n - i - k)*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k + 1,

Floor[(n - k - 1)/2]}], {k, Floor[(n - 1)/3]}], {n, 100}]

CROSSREFS

Cf. A307966.

Sequence in context: A016578 A268631 A335775 * A320374 A264757 A195773

Adjacent sequences:  A308105 A308106 A308107 * A308109 A308110 A308111

KEYWORD

nonn

AUTHOR

Wesley Ivan Hurt, May 13 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 05:12 EST 2021. Contains 349419 sequences. (Running on oeis4.)