OFFSET
0,1
REFERENCES
L. B. W. Jolley, Summation of Series, Dover (1961), eq (102), page 20.
LINKS
FORMULA
Equals Sum {k>=1} 1/(k*3^k). - Robert G. Wilson v, Aug 08 2011
Equals 1/2 - 1/(2*2^2) + 1/(3*2^3) - 1/(4*2^4) + ... [Jolley].
From Amiram Eldar, Aug 07 2020: (Start)
Equals 2 * arctanh(1/5).
Equals Integral_{x=0..oo} 1/(2*exp(x) + 1) dx. (End)
log(3/2) = 2*Sum_{n >= 1} 1/(n*P(n, 5)*P(n-1, 5)), where P(n, x) denotes the n-th Legendre polynomial. The first 10 terms of the series gives the approximation log(3/2) = 0.40546510810816438197(04...), correct to 20 decimal places. - Peter Bala, Mar 16 2024
EXAMPLE
0.4054651081081643819780131154643491365719904234624941976140143...
MATHEMATICA
RealDigits[Log[3/2], 10, 111][[1]] (* Robert G. Wilson v, Aug 08 2011 *)
PROG
(PARI) default(realprecision, 20080); x=10*log(3/2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b016578.txt", n, " ", d)); \\ Harry J. Smith, May 17 2009
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved