login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268631
Number of ordered pairs (a,b) of positive integers less than n with the property that n divides ab.
2
0, 0, 0, 1, 0, 4, 0, 5, 4, 8, 0, 17, 0, 12, 16, 17, 0, 28, 0, 33, 24, 20, 0, 53, 16, 24, 28, 49, 0, 76, 0, 49, 40, 32, 48, 97, 0, 36, 48, 101, 0, 112, 0, 81, 100, 44, 0, 145, 36, 96, 64, 97, 0, 136, 80, 149, 72, 56, 0, 241, 0, 60, 148, 129, 96, 184, 0, 129, 88, 212
OFFSET
1,6
COMMENTS
a(n)=0 iff n is prime or 1. a(n) is odd iff n is a multiple of 4.
FORMULA
a(n) = Sum_{k=1..n-1} (number of divisors of nk that are between k and n, exclusive).
a(n) = Sum_{k=1..n-1} (number of divisors of nk - 2*(number of divisors of nk that are <= k)).
a(n) = A006579(n) - (n-1). - Michel Marcus, Feb 09 2016
a(p^k) = (p(k-1)-k)*p^(k-1)+1 for prime p. - Chai Wah Wu, May 15 2022
EXAMPLE
For n=10 the a(10)=8 ordered pairs are (2,5), (5,2), (4,5), (5,4), (5,6), (6,5), (5,8), and (8,5).
MATHEMATICA
a[n_] := Sum[Sum[1, {i, Divisors[n*k]}] - 2*Sum[1, {i, TakeWhile[Divisors[n*k], # <= k &]}], {k, 1, n - 1}]
PROG
(PARI) a(n) = sum(k=1, n-1, sumdiv(n*k, d, (d > k) && (d < n))); \\ Michel Marcus, Feb 09 2016
(Python)
from math import prod
from sympy import factorint
def A268631(n): return 1 - 2*n + prod(p**(e-1)*((p-1)*e+p) for p, e in factorint(n).items()) # Chai Wah Wu, May 15 2022
CROSSREFS
Cf. A006579.
Sequence in context: A049247 A175621 A016578 * A335775 A308108 A320374
KEYWORD
nonn
AUTHOR
Matthew McMullen, Feb 09 2016
STATUS
approved