login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268628
T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally or vertically adjacent neighbor totalling two no more than once.
8
3, 9, 9, 24, 42, 24, 60, 174, 174, 60, 144, 666, 1086, 666, 144, 336, 2430, 6300, 6300, 2430, 336, 768, 8586, 34890, 55452, 34890, 8586, 768, 1728, 29646, 187224, 467190, 467190, 187224, 29646, 1728, 3840, 100602, 982086, 3819654, 6000978, 3819654
OFFSET
1,1
COMMENTS
Table starts
....3.......9........24..........60...........144.............336
....9......42.......174.........666..........2430............8586
...24.....174......1086........6300.........34890..........187224
...60.....666......6300.......55452........467190.........3819654
..144....2430.....34890......467190.......6000978........74914554
..336....8586....187224.....3819654......74914554......1430057208
..768...29646....982086....30553014.....915847266.....26758514760
.1728..100602...5063964...240364746...11018667294....493042858032
.3840..336798..25764066..1866503592..130903914954...8974328440044
.8448.1115370.129678528.14342680944.1539375100362.161737670836314
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) -4*a(n-2)
k=2: a(n) = 6*a(n-1) -9*a(n-2) for n>3
k=3: a(n) = 10*a(n-1) -29*a(n-2) +20*a(n-3) -4*a(n-4)
k=4: [order 6] for n>7
k=5: [order 10]
k=6: [order 14] for n>15
k=7: [order 26]
EXAMPLE
Some solutions for n=4 k=4
..2..1..0..0. .1..2..1..0. .0..0..0..0. .1..2..2..2. .0..0..0..1
..1..0..0..0. .0..1..0..0. .0..0..0..0. .2..1..2..2. .0..0..1..0
..2..0..1..0. .1..0..0..0. .1..0..0..0. .1..2..2..2. .0..0..0..1
..2..1..0..1. .0..0..1..1. .2..1..1..0. .0..2..2..2. .0..1..1..2
CROSSREFS
Column 1 is A084858.
Sequence in context: A207228 A207015 A268809 * A269052 A268971 A267966
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 09 2016
STATUS
approved