|
|
A084858
|
|
Binomial transform of A001651.
|
|
11
|
|
|
1, 3, 9, 24, 60, 144, 336, 768, 1728, 3840, 8448, 18432, 39936, 86016, 184320, 393216, 835584, 1769472, 3735552, 7864320, 16515072, 34603008, 72351744, 150994944, 314572800, 654311424, 1358954496, 2818572288, 5838471168, 12079595520
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n+1)/3 = A001792(n).
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-4).
|
|
FORMULA
|
G.f.: (x^2 - x + 1)/(1-2*x)^2.
a(n) = 3*(0^n/3 + 2^n + n*2^n)/4.
For n > 1: a(n) = 2*a(n-1) + 3*2^(n-2). - Philippe Deléham, Nov 10 2011
a(n) = 4*a(n-1) - 4*a(n-2). - Vincenzo Librandi, Jun 24 2012
|
|
MATHEMATICA
|
CoefficientList[Series[(x^2-x+1)/(1-2x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 24 2012 *)
|
|
PROG
|
(PARI) a(n)=3*(0^n/3+2^n+n<<n)/4 \\ Charles R Greathouse IV, Nov 11 2011
(MAGMA) I:=[1, 3, 9]; [n le 3 select I[n] else 4*Self(n-1)-4*Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jun 24 2012
|
|
CROSSREFS
|
Sequence in context: A034330 A264685 A320731 * A228820 A335470 A003262
Adjacent sequences: A084855 A084856 A084857 * A084859 A084860 A084861
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Paul Barry, Jun 11 2003
|
|
STATUS
|
approved
|
|
|
|