The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228820 Sum of positive F-ranks of all compositions of n. Also, sum of positive L-ranks of all compositions of n (see comments lines for definition). 2
 0, 0, 1, 3, 9, 24, 60, 145, 342, 791, 1800, 4041, 8971, 19733, 43077, 93441, 201592, 432867, 925574, 1971633, 4185537, 8857634, 18691421, 39339638, 82599634, 173050951, 361825484, 755140789, 1573359111, 3273103135, 6799507189, 14106802811, 29231731788 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Here, the F-rank of a composition is defined by 2^(F-1) - N, where F is the first part and N is the number of parts. For example: the F-rank of the composition [6, 2, 1, 1] is (2^5 - 4) = 28. Also, the L-rank of a composition is defined by 2^(L-1) - N, where L is the last part and N is the number of parts. For example: the L-rank of the composition [6, 2, 1, 1] is (2^0 - 4) = -3. The sum of all F-ranks of all compositions of n is 0. The sum of all L-ranks of all compositions of n is 0. a(n) is also the sum of nonnegative terms in the n-th row of triangle A228821. Note that in the table 1 (see example) the L-rank of the j-th composition is also the number of parts of the j-th region of the diagram minus the number of parts of the j-th composition. Also, note that in the table 2 the F-rank of the j-th composition is also the number of parts of the j-th region of the diagram minus the number of parts of the j-th composition. The same for all positive integers. From Omar E. Pol, Feb 07 2014: (Start) Also, the little F-rank of an overcomposition is defined by (2^(F-1) - N)/(2^D), where F is the first part, N is the number of parts and D is the number of distinct parts. For example: the little F-rank of the overcomposition [6, 2, 1, 1] is (2^5 - 4)/(2^3) = 7/2. Also, the little L-rank of an overcomposition is defined by (2^(L-1) - N)/(2^D), where L is the last part, N is the number of parts and D is the number of distinct parts. For example: the little L-rank of the overcomposition [6, 2, 1, 1] is (2^0 - 4)/(2^3) = -3/8. The sum of all little F-ranks of all overcompositions of n is 0. The sum of all little L-ranks of all overcompositions of n is 0. a(n) is also the sum of positive little F-ranks of all overcompositions of n. a(n) is also the sum of positive little L-ranks of all overcompositions of n. For the definition of overcomposition see A236002. (End) LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 EXAMPLE Table 1. Compositions of 4 in lexicographic order. --------------------------------------------------------- j   Composition   Diagram       F-rank          L-rank --------------------------------------------------------- .                 _ _ _ _ 1    [1,1,1,1]   | | | |_|    1 - 4 = -3      1 - 4 = -3 2    [1,1,2]     | | |_ _|    1 - 3 = -2      2 - 3 = -1 3    [1,2,1]     | |   |_|    1 - 3 = -2      1 - 3 = -2 4    [1,3]       | |_ _ _|    1 - 2 = -1      4 - 2 =  2 5    [2,1,1]     |   | |_|    2 - 3 = -1      1 - 3 = -2 6    [2,2]       |   |_ _|    2 - 2 =  0      2 - 2 =  0 7    [3,1]       |     |_|    4 - 2 =  2      1 - 2 = -1 8             |_ _ _ _|    8 - 1 =  7      8 - 1 =  7                                       ---             --- Total sum:                             0               0 Sum of positive terms:                 9               9 . Table 2. Compositions of 4 in colexicographic order. --------------------------------------------------------- j   Composition   Diagram       F-rank          L-rank --------------------------------------------------------- .                 _ _ _ _ 1    [1,1,1,1]   |_| | | |    1 - 4 = -3      1 - 4 = -3 2      [2,1,1]   |_ _| | |    2 - 3 = -1      1 - 3 = -2 3      [1,2,1]   |_|   | |    1 - 3 = -2      1 - 3 = -2 4        [3,1]   |_ _ _| |    4 - 2 =  2      1 - 2 = -1 5      [1,1,2]   |_| |   |    1 - 3 = -2      2 - 3 = -1 6        [2,2]   |_ _|   |    2 - 2 =  0      2 - 2 =  0 7        [1,3]   |_|     |    1 - 2 = -1      4 - 2 =  2 8             |_ _ _ _|    8 - 1 =  7      8 - 1 =  7                                       ---             --- Total sum:                             0               0 Sum of positive terms:                 9               9 . The sum of positive F-ranks of all compositions of 4 is 2+7 = 9, the same as the sum of positive L-ranks, so a(4) = 9. MAPLE a:= n-> add(add(binomial(n-k-1, i-2)*(2^(k-1)-i),         i=1..min(2^(k-1)-1, n-k+1)), k=1..n): seq(a(n), n=0..50);  # Alois P. Heinz, Sep 09 2013 MATHEMATICA a[n_] := Sum[Sum[Binomial[n-k-1, i-2]*(2^(k-1)-i), {i, 1, Min[2^(k-1) - 1, n - k + 1]}], {k, 1, n}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 21 2017, after Alois P. Heinz *) CROSSREFS Cf. A011782, A001511, A001792, A006519, A195012, A209616, A228369, A228525, A228821. Sequence in context: A264685 A320731 A084858 * A335470 A003262 A189162 Adjacent sequences:  A228817 A228818 A228819 * A228821 A228822 A228823 KEYWORD nonn AUTHOR Omar E. Pol, Sep 05 2013 EXTENSIONS More terms from Alois P. Heinz, Sep 09 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 13:53 EDT 2021. Contains 346447 sequences. (Running on oeis4.)