login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308107
Sum of the smallest side lengths of all integer-sided scalene triangles with perimeter n.
0
0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 3, 5, 3, 9, 7, 13, 12, 18, 17, 29, 23, 35, 36, 48, 43, 63, 58, 78, 75, 95, 92, 122, 111, 141, 141, 171, 162, 204, 195, 237, 231, 273, 267, 323, 306, 362, 360, 416, 402, 474, 460, 532, 522, 594, 584, 674, 650, 740, 735, 825
OFFSET
1,9
FORMULA
a(n) = Sum_{k=1..floor((n-1)/3)} Sum_{i=k+1..floor((n-k-1)/2)} sign(floor((i+k)/(n-i-k+1))) * k.
Conjectures from Colin Barker, May 13 2019: (Start)
G.f.: x^9*(2 + 2*x + 2*x^2 + x^3) / ((1 - x)^4*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = -a(n-1) + 2*a(n-3) + 4*a(n-4) + 2*a(n-5) - a(n-6) - 5*a(n-7) - 5*a(n-8) - a(n-9) + 2*a(n-10) + 4*a(n-11) + 2*a(n-12) - a(n-14) - a(n-15) for n>15.
(End)
MATHEMATICA
Table[Sum[Sum[k*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k + 1, Floor[(n - k - 1)/2]}], {k, Floor[(n - 1)/3]}], {n, 100}]
PROG
(PARI) a(n) = sum(k=1, (n-1)\3, sum(i=k+1, (n-k-1)\2, k*sign((i+k)\(n-i-k+1)))); \\ Michel Marcus, May 13 2019
CROSSREFS
Cf. A307686.
Sequence in context: A028376 A059235 A261216 * A323167 A361651 A222753
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 13 2019
STATUS
approved