login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307686
Sum of the smallest side lengths of all integer-sided triangles with perimeter n.
2
0, 0, 1, 0, 1, 2, 3, 2, 6, 5, 9, 9, 13, 13, 22, 18, 27, 29, 38, 35, 51, 48, 64, 63, 79, 78, 103, 95, 120, 122, 147, 141, 177, 171, 207, 204, 240, 237, 286, 273, 322, 323, 372, 362, 426, 416, 480, 474, 538, 532, 613, 594, 675, 674, 755, 740, 840, 825, 925
OFFSET
1,6
FORMULA
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * k.
Conjectures from Colin Barker, May 12 2019: (Start)
G.f.: x^3*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6) / ((1 - x)^4*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = -a(n-1) + 2*a(n-3) + 4*a(n-4) + 2*a(n-5) - a(n-6) - 5*a(n-7) - 5*a(n-8) - a(n-9) + 2*a(n-10) + 4*a(n-11) + 2*a(n-12) - a(n-14) - a(n-15) for n>15.
(End)
MATHEMATICA
Table[Sum[Sum[k*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
CROSSREFS
Cf. A005044.
Sequence in context: A054126 A323507 A144176 * A077418 A005421 A348083
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 11 2019
STATUS
approved