login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307688
a(n) = 2*a(n-1)-2*a(n-2)+a(n-3)+2*a(n-4) with a(0)=a(1)=0, a(2)=2, a(3)=3.
1
0, 0, 2, 3, 2, 0, 3, 14, 26, 27, 22, 44, 123, 234, 310, 363, 586, 1224, 2259, 3382, 4642, 7227, 13070, 23092, 36555, 54450, 85022, 143883, 245282, 396720, 616803, 973214, 1600106, 2664027, 4334662, 6887804, 10970523, 17828154, 29272390, 47634603, 76493626
OFFSET
0,3
COMMENTS
This is an autosequence of the second kind, the companion to A192395.
The array D(n, k) of successive differences begins:
0, 0, 2, 3, 2, 0, 3, 14, 26, 27, ...
0, 2, 1, -1, -2, 3, 11, 12, 1, -5, ...
2, -1, -2, -1, 5, 8, 1, -11, -6, 27, ...
-3, -1, 1, 6, 3, -7, -12, 5, 33, 30, ...
2, 2, 5, -3, -10, -5, 17, 28, -3, -55, ...
0, 3, -8, -7, 5, 22, 11, -31, -52, 13, ...
...
The main diagonal (0,2,-2,6,-10,22,...) is essentially the same as A151575.
It can be seen that abs(D(n, 1)) = D(1, n).
The diagonal starting from the third 0 is -(-1)^n*11*A001045(n), inverse binomial transform of 11*A001045(n).
FORMULA
G.f.: x^2*(2 - x) / ((1 - x - x^2)*(1 - x + 2*x^2)). - Colin Barker, Apr 22 2019
MATHEMATICA
a[0] = a[1] = 0; a[2] = 2; a[3] = 3; a[n_] := a[n] = 2*a[n-1] - 2*a[n-2] + a[n-3] + 2*a[n-4]; Table[a[n], {n, 0, 40}]
LinearRecurrence[{2, -2, 1, 2}, {0, 0, 2, 3}, 50] (* Harvey P. Dale, Oct 01 2021 *)
PROG
(PARI) concat([0, 0], Vec(x^2*(2 - x) / ((1 - x - x^2)*(1 - x + 2*x^2)) + O(x^40))) \\ Colin Barker, Apr 22 2019
CROSSREFS
Cf. A001045 (first and fifth upper diagonals), A014551 (second upper diagonal), A115102 (third), A155980 (fourth).
Sequence in context: A239579 A165192 A104771 * A056888 A286297 A339451
KEYWORD
nonn,easy
AUTHOR
STATUS
approved