login
A165192
a(0) = 1, a(1) = 2, a(3) = 3, a(n) = a(n-1) - a(n-3).
0
1, 2, 3, 2, 0, -3, -5, -5, -2, 3, 8, 10, 7, -1, -11, -18, -17, -6, 12, 29, 35, 23, -6, -41, -64, -58, -17, 47, 105, 122, 75, -30, -152, -227, -197, -45, 182, 379, 424, 242, -137, -561, -803, -666, -105, 698, 1364, 1469, 771, -593, -2062, -2833, -2240, -178
OFFSET
0,2
FORMULA
a(n) = (-1)^n*A104771(n).
G.f.: (1+x+x^2)/(1-x+x^3).
EXAMPLE
a(3) = 2 because 2 = 3 - 1 where the 1, 3 on the right of the equals sign are the first and third terms of the series.
MATHEMATICA
LinearRecurrence[{1, 0, -1}, {1, 2, 3}, 80] (* Harvey P. Dale, Apr 13 2012 *)
PROG
(Python)
series = [1, 2, 3]
for i in range(2, 30):
series.append(series[i] - series[i - 2])
print(series)
CROSSREFS
Sequence in context: A303121 A332921 A239579 * A104771 A307688 A056888
KEYWORD
easy,sign
AUTHOR
Ben Paul Thurston, Sep 06 2009
EXTENSIONS
Offset corrected and recurrence simplified by R. J. Mathar, Sep 08 2009
More terms from Harvey P. Dale, Apr 13 2012
STATUS
approved