login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165189
Partial sums of partial sums of (A001840 interleaved with zeros).
0
1, 2, 5, 8, 14, 20, 31, 42, 60, 78, 105, 132, 171, 210, 264, 318, 390, 462, 556, 650, 770, 890, 1040, 1190, 1375, 1560, 1785, 2010, 2280, 2550, 2871, 3192, 3570, 3948, 4389, 4830, 5341, 5852, 6440, 7028, 7700, 8372, 9136, 9900, 10764, 11628, 12600, 13572
OFFSET
1,2
COMMENTS
Also convolution of period six sequence 1,0,0,0,0,0,1,... (A079979) with sequence 1,2,5,8,14,20,30,40,... (A006918 without initial zero).
LINKS
FORMULA
G.f.: x/((1-x)^5*(1+x)^3*(1-x+x^2)*(1+x+x^2)).
54*a(n) = 631/64 +405/16*n +3/32*n^4 +15/8*n^3 +381/32*n^2 -(-1)^n*( 9/32*n^2 +45/16*n +375/64) -A131713(n) -3*A057079(n). - R. J. Mathar, Jun 16 2018
EXAMPLE
A001840 interleaved with zeros is
1, 0, 2, 0, 3, 0, 5, 0, 7, 0, 9, 0, 12, 0, 15, 0, ...
Partial sums thereof are
1, 1, 3, 3, 6, 6, 11, 11, 18, 18, 27, 27, 39, 39, 54, 54, ...
This equals A014125 interleaved with itself.
Partial sums thereof are
1, 2, 5, 8, 14, 20, 31, 42, 60, 78, 105, 132, 171, 210, 264, 318, ...
MATHEMATICA
Drop[Accumulate[Accumulate[Riffle[LinearRecurrence[{2, -1, 1, -2, 1}, {0, 1, 2, 3, 5}, 30], 0]]], 2] (* or *) LinearRecurrence[{2, 1, -4, 1, 2, 0, -2, -1, 4, -1, -2, 1}, {1, 2, 5, 8, 14, 20, 31, 42, 60, 78, 105, 132}, 50] (* Harvey P. Dale, Jun 08 2018 *)
PROG
(PARI) /* first computes u = A001840 interleaved with zeros, then v = partial sums, then w = second partial sums */ {m=50; u=vector(m, n, polcoeff(x/((1-x^2)^3*(1+x^2+x^4))+x*O(x^(n)), n)); v=vector(m); a=u[1]; v[1]=a; for(n=2, m, a+=u[n]; v[n]=a); w=vector(m-1); a=v[1]; w[1]=a; for(n=2, m-1, a+=v[n]; w[n]=a); w} \\ Klaus Brockhaus, Sep 21 2009
CROSSREFS
Cf. A001840 (expansion of x/((1-x)^3*(1+x+x^2))), A001840 (expansion of x/((1-x)^2*(1-x^3))), A079979, A006918, A014125.
Sequence in context: A022907 A006918 A274523 * A358055 A011842 A000094
KEYWORD
nonn
AUTHOR
Alford Arnold, Sep 16 2009
EXTENSIONS
Edited and corrected by R. J. Mathar, Klaus Brockhaus and N. J. A. Sloane, Sep 21 2009 - Sep 25 2009
STATUS
approved