login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011842
a(n) = floor(n*(n-1)*(n-2)/24).
4
0, 0, 0, 0, 1, 2, 5, 8, 14, 21, 30, 41, 55, 71, 91, 113, 140, 170, 204, 242, 285, 332, 385, 442, 506, 575, 650, 731, 819, 913, 1015, 1123, 1240, 1364, 1496, 1636, 1785, 1942, 2109, 2284, 2470, 2665, 2870, 3085, 3311, 3547, 3795, 4053, 4324, 4606, 4900, 5206, 5525, 5856, 6201, 6558, 6930, 7315, 7714, 8127, 8555, 8997, 9455, 9927, 10416, 10920
OFFSET
0,6
FORMULA
From R. J. Mathar, Apr 15 2010: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-8) - 3*a(n-9) + 3*a(n-10) - a(n-11).
G.f.: x^4*(1-x+x^2)*(1+x^2-x^3+x^4) / ((1-x)^4*(1+x)*(1+x^2)*(1+x^4)). (End)
a(n) = floor(binomial(n+1,4)/(n+1)). - Gary Detlefs, Nov 23 2011
MAPLE
seq(floor(binomial(n, 3)/4), n=0..43); # Zerinvary Lajos, Jan 12 2009
MATHEMATICA
Floor[Binomial[Range[0, 80], 3]/4] (* G. C. Greubel, Oct 20 2024 *)
PROG
(Magma) [Floor(Binomial(n, 3)/4): n in [0..80]]; // G. C. Greubel, Oct 20 2024
(SageMath) [binomial(n, 3)//4 for n in range(81)] # G. C. Greubel, Oct 20 2024
CROSSREFS
A column of triangle A011847.
Cf. A011886.
Sequence in context: A274523 A165189 A358055 * A000094 A182377 A327380
KEYWORD
nonn
EXTENSIONS
More terms added by G. C. Greubel, Oct 20 2024
STATUS
approved