Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Oct 21 2024 04:36:26
%S 0,0,0,0,1,2,5,8,14,21,30,41,55,71,91,113,140,170,204,242,285,332,385,
%T 442,506,575,650,731,819,913,1015,1123,1240,1364,1496,1636,1785,1942,
%U 2109,2284,2470,2665,2870,3085,3311,3547,3795,4053,4324,4606,4900,5206,5525,5856,6201,6558,6930,7315,7714,8127,8555,8997,9455,9927,10416,10920
%N a(n) = floor(n*(n-1)*(n-2)/24).
%H G. C. Greubel, <a href="/A011842/b011842.txt">Table of n, a(n) for n = 0..2000</a>
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1,0,0,0,0,1,-3,3,-1).
%F From _R. J. Mathar_, Apr 15 2010: (Start)
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-8) - 3*a(n-9) + 3*a(n-10) - a(n-11).
%F G.f.: x^4*(1-x+x^2)*(1+x^2-x^3+x^4) / ((1-x)^4*(1+x)*(1+x^2)*(1+x^4)). (End)
%F a(n) = floor(binomial(n+1,4)/(n+1)). - _Gary Detlefs_, Nov 23 2011
%p seq(floor(binomial(n,3)/4), n=0..43); # _Zerinvary Lajos_, Jan 12 2009
%t Floor[Binomial[Range[0,80], 3]/4] (* _G. C. Greubel_, Oct 20 2024 *)
%o (Magma) [Floor(Binomial(n,3)/4): n in [0..80]]; // _G. C. Greubel_, Oct 20 2024
%o (SageMath) [binomial(n,3)//4 for n in range(81)] # _G. C. Greubel_, Oct 20 2024
%Y A column of triangle A011847.
%Y Cf. A011886.
%K nonn
%O 0,6
%A _N. J. A. Sloane_
%E More terms added by _G. C. Greubel_, Oct 20 2024