login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165187
a(n) = n^3*(n+1)^2*(n+2)/12.
1
1, 24, 180, 800, 2625, 7056, 16464, 34560, 66825, 121000, 207636, 340704, 538265, 823200, 1224000, 1775616, 2520369, 3508920, 4801300, 6468000, 8591121, 11265584, 14600400, 18720000, 23765625, 29896776, 37292724, 46154080, 56704425, 69192000, 83891456, 101105664
OFFSET
1,2
COMMENTS
a(n) is row 30 of Table A128629 and can be generated by multiplying rows
two, three and five (or any other combination of rows with a row number product of 30).
FORMULA
a(n) = A000027(n)*A000217(n)*A000292(n) = A128629(30,n).
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
G.f.: -x*(1+17*x+33*x^2+9*x^3)/(x-1)^7.
From Amiram Eldar, Feb 13 2023: (Start)
Sum_{n>=1} 1/a(n) = 153/4 - 9*Pi^2/2 + 6*zeta(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 48*log(2) - 141/4 - Pi^2/4 + 9*zeta(3)/2. (End)
EXAMPLE
1,2,3,4,5, ... (A000027) times 1,3,6,10,15, ... (A000217) times 1,4,10,20,35, ... (A000292) yields 1,24,180,800, ...
MATHEMATICA
a[n_] := n^3*(n+1)^2*(n+2)/12; Array[a, 35] (* Amiram Eldar, Feb 13 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alford Arnold, Sep 06 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Sep 09 2009
STATUS
approved