login
A165184
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.
0
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26238, 78696, 236040, 707976, 2123496, 6369192, 19103688, 57299400, 171863208, 515484678, 1546139268, 4637473692, 13909589316, 41720274396, 125135347716, 375329632284, 1125759710916
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f. (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(3*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t
+ 1)
MATHEMATICA
coxG[{9, 3, -2, 30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 11 2017 *)
CROSSREFS
Sequence in context: A164353 A347506 A164697 * A165756 A166328 A166468
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved