OFFSET
0,2
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,2,2,2,2,2,-3).
FORMULA
G.f.: (x^7 + 2*x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 2*x^2 + 2*x + 1)/(3*x^7 - 2*x^6 - 2*x^5 - 2*x^4 - 2*x^3 - 2*x^2 - 2*x + 1).
a(n) = -3*a(n-7) + 2*Sum_{k=1..6} a(n-k). - Wesley Ivan Hurt, May 11 2021
MAPLE
seq(coeff(series((1+t)*(1-t^7)/(1-3*t+5*t^7-3*t^8), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 24 2019
MATHEMATICA
CoefficientList[Series[(x^7 + 2 x^6 + 2 x^5 + 2 x^4 + 2 x^3 + 2 x^2 + 2 x + 1)/(3 x^7 - 2 x^6 - 2 x^5 - 2 x^4 - 2 x^3 - 2 x^2 - 2 x + 1), {x, 0, 40}], x ] (* Vincenzo Librandi, Apr 29 2014 *)
coxG[{7, 3, -2, 30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 15 2015 *)
PROG
(PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^7)/(1-3*t+5*t^7-3*t^8)) \\ G. C. Greubel, Sep 15 2017
(Magma) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^7)/(1-3*t+5*t^7-3*t^8) )); // G. C. Greubel, Aug 24 2019
(Sage)
def A164353_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^7)/(1-3*t+5*t^7-3*t^8)).list()
A164353_list(30) # G. C. Greubel, Aug 24 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved