login
A164354
Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.
1
1, 5, 20, 80, 320, 1280, 5120, 20470, 81840, 327210, 1308240, 5230560, 20912640, 83612160, 334295130, 1336566780, 5343813270, 21365442180, 85422543120, 341533342080, 1365506334720, 5459518355670, 21828050092440, 87272125451010
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003947, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1).
a(n) = -6*a(n-7) + 3*Sum_{k=1..6} a(n-k). - Wesley Ivan Hurt, May 11 2021
MAPLE
seq(coeff(series((1+t)*(1-t^7)/(1-4*t+9*t^7-6*t^8), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 28 2019
MATHEMATICA
coxG[{7, 6, -3, 30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 01 2017 *)
CoefficientList[Series[(1+t)*(1-t^7)/(1-4*t+9*t^7-6*t^8), {t, 0, 30}], t] (* G. C. Greubel, Sep 15 2017 *)
PROG
(PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^7)/(1-4*t+9*t^7-6*t^8)) \\ G. C. Greubel, Sep 15 2017
(Magma) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^7)/(1-4*t+9*t^7-6*t^8) )); // G. C. Greubel, Aug 28 2019
(Sage)
def A164354_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^7)/(1-4*t+9*t^7-6*t^8)).list()
A164354_list(30) # G. C. Greubel, Aug 28 2019
(GAP) a:=[5, 20, 80, 320, 1280, 5120, 20470];; for n in [8..30] do a[n]:=3*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]) -6*a[n-7]; od; Concatenation([1], a); # G. C. Greubel, Aug 28 2019
CROSSREFS
Sequence in context: A162925 A163316 A163878 * A164706 A165185 A165757
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved